

PYTHON

FOR

BEGINNERS

The Ultimate Step by Step Learning Guide for Beginners to Python Programming in the Best Optimal Way ENRIQUE

SANCHEZ

Copyright © 2019 Enrique Sanchez All rights reserved.

It is not legal to reproduce, duplicate, or transmit any part of this document by either electronic means or in printed format. Recording of this publication is strictly prohibited Disclaimer

The information in this book is based on personal experience and anecdotal evidence. Although the author has made every attempt to achieve an accuracy of the information gathered in this book, they make no representation or warranties concerning the accuracy or completeness of the contents of this book. Your circumstances may not be suited to some illustrations in this book.

The author disclaims any liability arising directly or indirectly from the use of this book. Readers are encouraged to seek Medical. Accounting, legal, or professional help when required.

This guide is for informational purposes only, and the author does not accept any responsibilities for any liabilities resulting from the use of this information. While every attempt has been made to verify the information provided here, the author cannot assume any responsibility for errors, inaccuracies or omission

TABLE OF CONTENTS

INTRODUCTION

CHAPTER ONE

What is Python?

Why should you learn python?

CHAPTER TWO

Setup Pyhton Environment

Recommended System Requirements Processors:

Minimum System Requirements

Software

Modifications

Install and Run Python

CHAPTER THREE

Basics of python

Your first Hello World app

The Main Function

Variables and Types The syntax for declaring a variable in Python

Concatenating variables

String Formatting

Dictionary in Python

Common Methods of Dictionary

Basic Operators

Arithmetic, Logical, Comparison, Assignment, Bitwise & Precedence Conditions & Loops

Loop

Functions

Classes and Objects

Inheritance through classes

Constructors in Python

CHAPTER FOUR

Advance Element of Python

Generators

Collections Module

Itertools Module Context Managers

Decorators

Packing Unpacking

Exception handling

How do we handle the exceptions?

CHAPTER FIVE

Data Science Elements of Python Numpy Arrays

Pandas DataFrames

CONCLUSION

INTRODUCTION

The term "history" might be the wrong direction for Python. With history, one connects long past and also outdated ones. Python is still a young programming language. Even if she is already over 20 years old. But the eternally young language C is already over 40 years old.

The language was developed in the early 1990s by Guido van Rossum at the Center for Mathematics (Center for Mathematics and Informatics) in Amsterdam. Originally it had been developed as a successor to the language of instruction ABC and should run on the distributed operating system Amoeba. Guido van Rossum had also contributed to the development of the language ABC so that his experience with ABC also flowed into Python.

Python is a very powerful and easy-to-learn programming tool with efficient abstract data and a simplified approach to programming. Due to the elegant syntax and compelling typing makes Python an outstanding interpretation language for rapid application development.

When you visit http://www.python.org, the Python interpreter and the extensive library are available for free as source code and in binary form for all relevant platforms and also can be distributed for free. On the same page, there are tools and programs, references to free modules as well as third-party distributions The Python interpreter can be extended easily to include new functions, and data types that can be written in C or C

++ (or other languages that can be executed from C) are applied. This guide introduces the key concepts and properties of the Python language and system.

This book is suitable for beginners who want to learn both the basics of programming or general programming principles, as well as the language Python. In our opinion, there is no other common programming language that makes it easier for a beginner to learn to program.

CHAPTER ONE

What is Python?

The word “Python” is given to a language used commonly for software development that is authoritative and highly efficient. It consists of high-level data structures and a very modest approach towards Object-Oriented programming.

Its well-designed syntax and vigorous typing, make it a perfect choice for scripting application development.

Python is being used frequently in this modern era because it consists of a substantial standard library that is readily available in source and binary form. This library is available for major platforms, and they are available on the authorized python website. The website provides you a detailed series of tools and products that could help you build strong concepts of the language. With complete and

detailed documentation, you can start, and easily polish your python programming skills.

This book is going to familiarize you to the elementary notions and structures of python programming and its system. Here every concepts is explains with real-world programming examples that provides you the opportunity to grab each concept better. You will find some of Python’s noteworthy features discussed in this book with a decent feel of this language’s taste and elegance.

Why should you learn python?

The name “Python” is given to the language that is used for software development all across that globe because you could learn the language easily if you have resilient conceptions of object-oriented programming. It is a language that provides you a lot of options that you have practiced in other programming languages as well.

The primary reason you should move on to this language is that it is a minimalistic language. It means that the same problem that takes five lines in another language to code with Python you can solve the same problem in two lines.

Moreover, it is a lot easier to learn, and its exceptional data science abilities make it fun to learn. If you want to nurture

as a developer, then it is necessary that you know different programming languages. Since Python provides multiple programming paradigms, it is significant to make sure that you learn this language and enhance your skills in it.

CHAPTER TWO

Setup Python Environment

Recommended System Requirements

Processors:

o Intel® Core™ i5 processor 4300M at 2.60 GHz or 2.59 GHz (one socket, two cores, two threads per core), 8 GB of DRAM

o Intel® Xeon® processor E5-2698 v3 at 2.30 GHz (2

sockets, 16 cores each, one thread per core), 64 GB

of DRAM

o Intel® Xeon Phi™ processor 7210 at 1.30 GHz (1

socket, 64 cores, four threads per core), 32 GB of DRAM, 16 GB of MCDRAM (flat mode enabled) o Disk space: 2 to 3 GB

o Operating systems: Windows® 10, macOS*, and Linux*

Minimum System Requirements o Processors: Intel Atom® processor or Intel® Core™

i3 processor

o Disk space: 1 GB

o Operating systems: Windows* 7 or later, macOS, and Linux

o Python* versions: 2.7.X, 3.6.X

o Included development tools: conda*, conda-env, Jupyter Notebook* (IPython)

o Compatible tools: Microsoft Visual Studio*, PyCharm*

o Important Python packages to be included: NumPy, SciPy, scikit-learn*, pandas, Matplotlib, Numba*, Intel® Threading Building Blocks, pyDAAL, Jupyter, mpi4py, PIP*, and others.

Software

o PIP and NumPy: Installed with PIP, Ubuntu*, Python 3.6.2, NumPy 1.13.1, scikit-learn 0.18.2

o Windows: Python 3.6.2, PIP and NumPy 1.13.1, scikit-learn 0.18.2

o Intel® Distribution for Python* 2018

Modifications

o Scikit-learn: Conda*-installed NumPy with Intel®

Math Kernel Library (Intel® MKL) on Windows (PIP-installed SciPy on Windows contains Intel MKL

dependency)

o Black-Scholes on Intel Core i5 processor and Windows: PIP-installed NumPy and Conda-installed SciPy

Install and Run Python

-

Windows

1.

Download Python from the official website.

Ensure that you download the latest version for Windows.

2.

After you have downloaded the package open it and follow the instructions. Once you see the message, "The installation was successful,"

you can now move ahead with the text editor.

3.

Now it comes to a text editor, which is entirely a personal choice. You can download any text editor that you like but recommend are Visual Studio Code and Sublime Text.

4.

Just download the text editor you selected and install it on your machine. The installation process is straightforward.

-

Linux

1.

To start programming in Linux, you need to follow some extra steps. Before downloading python, you need to download the following dependencies.

$ sudo apt-get install build-essential checkinstall

$ sudo apt-get install libreadline-gplv2-dev

libncursesw5-dev

libssl-dev

libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

2.

Download Python from the official website.

Ensure that you download the latest version for Linux.

3.

Now go to the terminal and locate the directory where the file is available. Once

found run the following command to move forward.

$ tar -xvf Python-3.6.0.tgz

4.

This command is used to extract the zip file.

The filename might be different if you have downloaded a different version.

5.

Now go to the extracted library and run the following command.

$ cd Python-3.6.0

6.

Now issue the commands written below to compile the Python source code on your operating system

$./configure

$ make

$ make install

7.

If you are looking to install Sublime Text in Ubuntu, then issue the commands written below.

$

sudo

add-apt-repository

-y

ppa:webupd8team/sublime-text-2

$ sudo apt-get update

$ sudo apt-get install sublime-text

-

Mac

1. Download Python from the official website. Ensure that you download the latest version for Mac.

2. After you have downloaded the package open it and follow the instructions. Once you see the message, "The installation was successful," you can now move ahead with the text editor.

3. Now it comes to a text editor, which is entirely a personal choice. You can download any text editor that you like but recommend are Visual Studio Code and Sublime Text.

4. Just download the text editor you selected and install it on your machine. The installation process is straightforward.

CHAPTER THREE

Basics of python

Your first Hello World app

1. Now open the text editor and make a new file (File-

>New File). Now save t with a .py extension. For instance, you can save it as HelloWord.py.

2. Just copy-paste the line “print ("Hello, World!")”

and save it again.

print("Hello, World!")

3. Now go to the command prompt and navigate to the path where you have collected your file. You can see your line “Hello World” line in the command prompt. Below screenshot shows the output.

4. Once complete, build your project through Tool >

Build. You will see the message “Congratulations; you've successfully run your first Python program.”

The Main Function

Python’s main function is the most significant idea that a programmer needs to understand. The example written below is in python to make you understand the concept as well as highlight the importance of the function.

def main():

print "hello world!"

print ".Hello, World from the outside."

The above code has two pieces of lines that commands the program to print; the first one is demarcated within the man function while the other one demarcated outside the scope of it. When you run the function, the following is the output

-

Only “Hello, World from the outside”

-

You can see that the hello world code didn’t work Following are the reasons due to which we didn’t get the desired response.

-

Whenever the Python interpreter goes through the source file, it will read the code and execute it.

-

The compiler runs the source file as the main function, it sets the particular variable (___name___) to (__main__). Thus, as the main function executes, it will read the statement and verify whether the condition equals __main__.

-

When the condition returns true, you can run the python files as reusable modules or standalone programs.

-

As we move ahead with other concepts you must know that this language uses “==”(double equal) for comparison and “=” (single equal) for assignment as most of the other programming languages.

-

Python’s main function is available in two different ways. These methods described below: In the first method you need to:

o import: __name__= module's filename o In case the condition returns false then the script in the __main__ will not be executed The second method comprises of

o Direct run:__name__=__main__

o In case the condition returns false __main__ method will not run.

It means that the source file will execute every time the program is run. While executing the source file it will check for a main method with an If condition that will be explained later in this book.

Thus, it means that on all occasions this source file will execute, it will check with an if condition to check whether it is the main method or not.

def main():

print("Hello World!")

if __name__== "__main__":

main()

print("hello world python writer")

Variables and Types

The readers who have basic concept of object-oriented programing know about variables. Variables are not precise to a certain language as they are a concept that needs to be understood so that they could be applied in different situations. A python variable resides in memory reserved for storing values which are retrievable upon the requirement for computer processing.

Every variable you define is of a particular type. For instance, you come across circumstances where you want to store characters, then the variable is of string type while if you're going to store number, then you will declare a variable of type number. To define a variable, you are supposed to give them a particular name so that whenever you are accessing the memory location, later on, you can access it through that name.

The syntax for declaring a variable in Python There is a proper syntax that you need o to follow to declare the variable and use it. Here we will develop an example which provides you an idea about the concept of variables.

a=100

print a

So, the output on the console will be 100. In this, you have declared a variable with value 100, and you have printed it.

Now if later on, you face a situation where you want to transform the declaration and give the same variable another value, then you need to do as follows.

Declare a variable and initialize it f = 0

print (f)

re-declaring the variable works

f = 'guru99'

print (f)

Concatenating variables

Concatenation in programming refers to a term where you join string along. It is usually used to ensure that the string you display is dynamic. Let’s assume a problem that asks you to show the number of products left behind to the user, and every time the quantity is different. In such scenarios where the value is dynamic, you use string concatenation.

In python, we can concatenate different data types such as string and number together. In the following, we will be concatenating a string value and a numerical value together. Here you can find a difference between Java and Python as it doesn’t allow you to concatenate it until the variable b is declared as a string as well. In case you use

number for it then you might have to face a type error which is illustrated in the picture below.

a="This is a string."

b = 99

print a+b

The code given above is error-prone as the variable a has a data type string while the data type of variable b is number.

The following picture displays the error that you will receive.

The succeeding code will display the correct output. It is so because while printing you are converting the variable b to string. It means you can print concatenate similar datatype

variables in python. It makes Python a strongly typed language for software development.

a="Guru"

b = 99

print(a+str(b))

Local and Global Variables

A global variable is a variable that is declared once and used throughout the program. Whereas local variable defined within that particular method, and outside that code block, you cannot access that variable.

The subsequent description is a code snippet that describes the concept of global variable.

The variable “f” in the example given above is global as it is manageable all over the program. This variable is assigned a value of 101, printed in the output. Variable “f” declared again in the function, and that is the local scope. Inside the function, the variable f declared again in the function and assumed as the local scope. The code snipet written above has a function where the variable is assigned the value “I am learning python,”. The output screen also shows the same string. This local variable is dissimilar to the global variable “f” that was defined earlier. Once the function is complete, the variable destroys. If you look at line 12 when we see the output

It is crucial to know that the global variable can be retrieved anywhere throughout the program. A global variable can be read inside the function well. The picture below shows how the global variable is overwritten inside a function.

The code snippet available in the picture above is also given below for better understanding.

f = 101;

print f

Global vs.local variables in functions def theFunction():

global f

print f

f = "changing global variable"

theFunction()

print f

Del command is available to delete the variable. The below illustration proclaims a variable and then deletes it. When the program tries to print it again after deleting it the compiler gives an error.

String Formatting

In python, everything is an object, and whenever you declare a string in python, it is an object too. To declare a string variable you can follow the syntax written below name =” This is the name”

Python is a language that does not support character type.

These strings are preserved as the size of one as they are considered one substring. String slicing is also a concept that is commonly used in python. It could be done with help of square brackets for along with the respective index of the string and get the right string. The example written below shows how string slicing could be performed in python.

var1 = "Guru99!"

var2 = "Software Testing"

print ("var1[0]:",var1[0])

print ("var2[1:5]:",var2[1:5])

We are now moving on to the basic string operations that apply to a string. The following table shows the operator the description and a small example and its output to show how the operators actually work.

Operat

Description

Examp

Output

or

le

[]

Provides

x="Th

If

you

you

the is is

access

the n

character

Name[2],

ame"

from

that

Output “i.”

print

particular

x[1]

index

[:]

It refers to x="Th

If

you

the

range is is

access

the n

slice. Where

Name[1:2]

ame"

you can get

Output of

print

a

string

“hi.”

x[1:3

within

a]

defined

range

In

It is used to x=Tim

It

will

check if the e"

return true

print

given

"m" i

character is n x

exists in the

string.

Not in

Returns true x="Gu

L is not

if the given ru"

present in

print

letter is not

the

list.

"l" n

present in

Thus

the

ot in

the string

result will

x

be true.

r/R

Raw string Print

Prints \n

suppresses

r'\n'

Prints \n

the

real prints

meaning of \n and

the string

print

R'/n'

prints

\n

%

It inserts the name

The result

canonical

= 'Th

will be This

is is

string

is a string

a str

picture

of

99

ing'

the object. It numbe

will format r = 99

the

string print

'%s %

that

will d' % (

display the name,

numbe

string

and

r)

the number

together

with

formatted

string.

+

Concatenati

x="Py

The result

on. It will thon"

will

be

y="10

join

both

Python100

0"

the strings print

into one.

x+y

*

Repeat. The x="Py

PythonPyth

string

will thon"

on

y="99

print

the

"

character

print

twice.

x*2

Here is another slicing example where you can assign the variable to another string. The code below illustrates how the variable replaces with the help of one of the string functions.

x = "Hello World!"

print(x[:6])

print(x[0:6] + "this is an example") It is important to note that in the above example: 6 means the range 0:6.

String replace is another string function that replaces the string with the given characters. The following example shows another example where you can see the string replaced with the given value.

Python provides you the option of manipulating the string according to your requirement. Here are some of the

common operations that perform on the string. Following are some of the examples of operations performed on a string.

string="python"

print(string.upper())

Output: “PYTHON”

string="python"

print(string.capitalize())

Output: PYTHON

string="PYTHON."

print(string.lower())

Output: “python.”

Following are some other common examples commonly used while programming in Python.

print(":".join("Python"))

Joins the string and the yield will be “Python:”

string="12345"

print(''.join(reversed(string)))

This function will reverse the string, and the yield will be

“54321”.

word="This is python example."

print(word.split(' '))

This function splits the string by spaces.

Dictionary in Python

Every programming language implements a few data structures that are essential to solving critical problems.

Python’s utilization of data structures can be seen through the use of dictionaries. Dictionary is a data structure that stores values and accessed with the aid of keys. It is also known as the key value pair data structure that could be used to store values. It is imperative to understand that the

-

Keys are a spare element

-

Values can contain anything some prominent examples include a list, string, or a number.

To declare a dictionary, you need to follow the syntax mentioned below

Dict = { ' Tim': 18, xyz,.. }

As the syntax suggests, a dictionary lists in curly brackets where key and values separated by a colon. As we move ahead, it is essential to comprehend the following important aspects.

-

Keys in the dictionary are case sensitive. Which means that same key with the varying case identified as a unique key.

-

The data stored in the dictionary could be of any type, but it is vital to ensure that the key value is always immutable such as numbers, string, etc.

-

Keys should be unique in a dictionary.

Common Methods of Dictionary

Data structures are used to resolve common programming problems. Thus they come with some conventional methods that help programmers solve complex problems.

-

Copy Dictionary

This function helps to copy the entire dictionary to a new dictionary. The following code snippet shows an example of this function.

Boys = {'Tim': 18,'Charlie':12,'Robert':25}

Girls = {'Tiffany':22}

studentX=Boys.copy()

studentY=Girls.copy()

print studentX

print studentY

-

Update

You can also find a function that helps to update the contents of the dictionary. It can add new contents and even update the existing ones. The example below illustrates where a new key-value pair combined in the dictionary.

Dict = {'Tim': 18,'Charlie':12,'Tiffany':22,'Ro bert':25}

Dict.update({"Sarah":9})

print(Dict)

-

Delete

As we add new items to the dictionary, we need to remove some of them as well. To delete an element from the dictionary, we use the del command. Here is the code that shows how you can remove an element from an existing dictionary.

Dict = {'Tim': 18,'Charlie':12,'Tiffany':22,'Ro bert':25}

del Dict ['Charlie']

print(Dict)

-

Items

While using dictionaries, we face numerous situations where we need to go through all the items of the dictionary. The code snippet below highlights a situation where the program needs to check whether a provided element is obtainable in the list or not.

Dict = {'Tim': 18,'Charlie':12,'Tiffany':22,'Ro bert':25}

Boys = {'Tim': 18,'Charlie':12,'Robert':25}

Girls = {'Tiffany':22}

for key in Dict.keys():

if key in Boys.keys():

print True

else:

print False

-

Sorting

Whenever you have a collection of items, you need some basic functionalities along among which sorting is the most imperative feature. Python provides sorting for its programmers. The example illustrates the above concept.

Dict = {'Tim': 18,'Charlie':12,'Tiffany':22,'Ro bert':25}

Boys = {'Tim': 18,'Charlie':12,'Robert':25}

Girls = {'Tiffany':22}

Students = list(Dict.keys())

Students.sort()

for S in Students:

print(":".join((S,str(Dict[S]))))

-

Length

In order to find the exact number of elements in a dictionary len function is available. Following is a code that could be used for understanding the concept better.

Dict = {'Tim': 18,'Charlie':12,'Tiffany':22,'Ro bert':25}

print "Length : %d" % len (Dict)

-

Print the dictionary elements

To print the dictionary in the readable form, you need to make a dictionary into a string format. The code below illustrates the concept you can use the following code to understand the concept.

Dict = {'Tim': 18,'Charlie':12,'Tiffany':22,'Ro bert':25}

print "printable string:%s" % str (Dict)

-

Comparison between elements

Dictionary also provides you the option to compare items.

A method with name “CMP” used for this purpose. Here is

an example that will help the reader to have a better understanding of the concept.

Boys = {'Tim': 18,'Charlie':12,'Robert':25}

Girls = {'Tiffany':22}

print cmp(Girls, Boys)

Basic Operators

Arithmetic, Logical, Comparison, Assignment, Bitwise

& Precedence

Operators play a critical role in every programming language. They are used to handle individual items and returns the desired result. The data on which these operations performed are called the operands or arguments. Most of the operators epitomized by special characters such as “is” and “is not” are two operators commonly used in string manipulation. Following are the typical arithmetic operator that is essential while programming in Python. All the examples below come along with a relevant case to explain the concept better.

-

Arithmetic Operators

All the simple arithmetic operations accomplished with the assistance of arithmetic operators in python. You can find the common operators as follows

-

Addition

-

Subtraction

-

Multiplication

-

Division

-

Modulus

-

Exponent

x= 4

y= 5

print(x + y)

-

Comparison of Operations

These operators are used to equate values on either side of the operand and trace the relation between them. These operators are also known as relational operators. Some of the most common operators are (==, != , <>, >, <=, etc.).

x = 4

y = 5

print(('x > y is',x>y)) In the above instance, the result will be a true or false as it will match both the values and return necessary value if the condition met.

-

Assignment Operations

Assignment operators are the operations used for assigning values to variables. The common assignment operators accessible in Python include (+=, - = , *=, /= , etc.). With Python, we can use compound assignment operators as well.

n1 = 4

n2 = 5

print(("Line 1 - Value of num1 : ", n1)) print(("Line 2 - Value of num2 : ", n2)) The example shown below illustrates the compound assignment operators.

n1 = 4

n2 = 5

res = n1 + n2

print(("Line 1 - Result of num1+num2 is ", res)) res += num1

print(("Line 1 - Result of res += num1 is ", res))

The example shows two variables initializes with values and then adding them into a third variable. In the fourth line, the result further adds to the number 1 value, and the result is displayed.

-

Logical Operators

Logical operators in Python used for the conditional statement in which the program has to evaluate the condition based on the situation. Three major logical operators in programming are known as

-

AND: returns true if both conditions return true.

-

OR: returns true when even one condition fulfills

-

NOT: returns true if the condition not met

a = True

b = False

print(('a and b is',a and b))

print(('a or b is',a or b))

print(('not a is',not a))

The above code has the following output, which shows how these logical operators work.

-

Membership Operators

They are used for a structure such as a list, string, or tuples.

The two main membership operators that could be utilized in Python are known as the “in” and “not in.” In the following example, the program is checking whether the given value is accessible in the list or not with the assistance of operators known as membership operators.

V1 = 4

V2 = 8

list = [1, 2, 3, 4, 5];

if (V1 in the list):

print("Line 1 – V1 is available in the given list")

else:

print("Line 1 – V1 is not available in the g iven list")

if (y not in the list):

print("Line 2 – V2 is not available in the g iven list")

else:

print("Line 2 – V2 is available in the given list")

-

Identity Operators

Identity operators are one of the most beneficial items of Python as they allow the users to compare the memory location of two objects. Following are the two operators used in Python:

-

The operator is: This operator will return true if both the variables are directing towards the identical object.

-

The operator is not: It is going to return false if two variables point the same object.

Operators (In falling Meaning directive of priority)

**

Exponent

*, /, //, %

Multiplication, Division, Floor

division, Modulus

+, -

Addition, Subtraction

<= < > >=

Comparison operators

= %= /= //= -= += *= **= Assignment Operators

is is not

Identity operators

in not in

Membership operators

not or and

Logical operators

x = 20

y = 20

if (x is y):

print("x & y SAME identity")

y=30

if (x is not y):

print("x & y have DIFFERENT identity")

-

Operator Precedence

Operator precedence is a concept in which tells which operator evaluated first. If you want to become a handful programmer, it is significant to know about operator precedence as it helps to avoid ambiguity. The above table demonstrates all the operators available with their decreasing order of priority.

Conditions & Loops

Conditional statements are a major part of every programming language. These statements help the program to act according to the given situation. The condition evaluated inside a conditional statement returns true or false upon which further action takes place.

Conditional statements used as if statement and they are known as if statements in programming terms. The coe below shows a conditional statement in Python.

def main():

a,b =2,8

if(a < b):

str= "a is less than b"

print(str)

if __name__ == "__main__":

main()

In the above code, the program is comparing two integers a and b. whenever the value of x is less than y the if statement will execute the very next statement. Incase the if the condition does not returns true you will receive an error message stating that the “str” is not defined.

s

To overcome this error, you can write an else statement which will be executed every time if the condition doesn’t return true. Following is the code was written to show you the solution to the problem mentioned above.

There come to some situations when the else statement does not give the desired result. The picture above illustrates a scenario where if you give x and y the same value, then it will print “X is greater than Y.” If we look at it logically, then we find out that the result is wrong as both the values are the same. In this scenario we can add another if statement to get the desired result as shown below

def main():

x,y =8,8

if(x < y):

st= "x is less than y"

elif (x == y):

st= "x is same as y"

else:

st="x is greater than y"

print(st)

if __name__ == "__main__":

main()

Nested If Statements:

When you want to have nested conditions, it is better to go for nested if statements. Python allows programs to utilize nested if statements to get the desired results. The syntax is the same as a simple if statement. The case below illustrates shows how nested if statement could be used.

total = 100

#country = "US"

country = "AU"

if country == "US":

if total <= 50:

print("Shipping Cost is $50")

elif total <= 100:

 print("Shipping Cost is $25") elif total <= 150:

print("Shipping Costs $5")

else:

print("FREE")

if country == "AU":

if total <= 50:

print("Shipping Cost is $100")

else:

print("FREE")

Switch Statement

The switch statement is an alternative to if statements, it is a multiway division code that allows you to compare values of variables to values given in the switch statement.

Python Implements dictionary mapping to implement a switch statement. The code written below shows how you can use switch statement in your program.

def SwitchExample(argument):

switcher = {

0: " This is Case Zero ",

1: " This is Case One ",

2: " This is Case Two ",

}

 return switcher.get(argument, "nothing") if __name__ == "__main__":

argument = 1

print (SwitchExample(argument))

Loop

Looping is another prevalent concept of programming.

Through this, we can achieve redundant, repetitive tasks done in one go with limited resources. This concept is used commonly in all programming languages, and we can say that without a while loop, we cannot say a programming language is complete.

-

The While Loop

Python provides a specific sytax for performing repetitive tasks. The name given to this concept is looping through.

This can be done through while loop which is one way of performing repetitive task in python. In while lopp the the code block is repeated until condition results in true. The code snippet shown below highlights how one can use while loop in python.

def main():

x=0

#define a while loop

while(x <4):

print(x)

x = x+1

if __name__ == "__main__":

main()

-

The For Loop

In Python For loops are known as Iterators. It is another technique that could be used to recapitulate through unless the conditional statement marked as valid.

x=0

#define a while loop

while(x <4):

print x

x = x+1

#Define a for loop

for x in range(2,7):

print(x)

if __name__ == "__main__": main()

-

The Break & Continue Statement

You can break through a loop depending upon a condition.

The code below shows an example where there is a range 10- 20 and a loop goes through it. Whenever the value is equal to 15, the loop will exit, and whenever the value is divisible by two, the loop will continue.

def main():

for x in range (10,30):

if (x == 15): break

#if (x % 2 == 0) : continue

print(x)

if __name__ == "__main__":

main()

-

Enumerate in Loops

Python utilizes enumerate in “For loops” as it:

-

Returns the index number

-

Returns the value on that index

Enumerations are usually used to index or number the list.

Python provides you an easy and elegant way to loop through the list and perform desired actions.

Functions

Functions contain standard pieces of code which could be called anywhere in the code. Python provides some in-built functions and also provides the opportunity to the programmer to create functions. You can also find them with the name of methods or procedures.

Now it comes to the point where we need to know how do we write a function and how do we use it. Whenever the function is utilized anywhere in the program, we call it a function call. Following is a screenshot that shows how do we declare a function and call it.

It is indispensable to ensure that you do proper indentation of the function while writing the body of the function. It is significant to ensure that the next line of the function starts from the same position as the first line of the function.

Following is an example where the user gets an indentation error due to wrong formatting of the function.

Return Value

Functions return values further processed according to the requirements of the program. If you want your function to return a value, then you need to specify a return statement

in your function. Following is an example where you can find a function that returns an integer.

Classes and Objects

In software development terms, “Class is a logical alliance of variables and functions,” and it is the reason due to which most of the programming language provides you the provision of generating classes. Following are the steps that could be developed to produce a class.

1. Use the Class keyword to create a class class myClass():

2. Define some properties and functions inside the class

def method1 (self):

print "This is a python course."

def method2 (self,something):

print "Software Testing:" + something

3. Make sure that everything in the class is indented just as we do in functions. Anything that is not indented is not considered a portion of the class.

4. To use the class, an instance of the class is initiated.

c = myClass()

5. To call the functions declared in the class need to be called to ensure that the object of the class acts according to the desired requirement.

c.method1()

c.method2(" Testing is fun")

Following is a complete example of a class and its function.

Further ahead in the main function, an instance of the class created, and some of the functions defined in the class are called to ensure that the class acts according to the desired requirement.

class myClass():

def method1(self):

print("Guru99")

def method2(self,someString):

print("Software Testing:" + someString) def main():

exercise the class methods

c = myClass ()

c.method1()

c.method2(" Testing is fun")

if __name__== "__main__":

main()

Inheritance through classes

Inheritance is a concept of object-oriented programming.

In leman terms, we can say it is a parent-child relationship where the drive class receives all the properties of the parent class. The parent class is known by the name of base, whereas the child class is known as the derived class.

Python supports simple inheritance and multiple inheritances. A class gets all the functions and variables of the parent class.

The code below shows how we can use inheritance with python.

class DerivedClass(BaseClass):

body_of_derived_class

The code below shows how a child class uses the functions of the parent class.

class myClass():

def method1(self):

print("Guru99")

class childClass(myClass):

#def method1(self):

#myClass.method1(self);

#print ("childClass Method1")

def method2(self):

print("childClass method2")

def main():

exercise the class methods

c2 = childClass()

c2.method1()

#c2.method2()

if __name__== "__main__":

main()

Constructors in Python

Classes have constructors which initialize the instantiated object to predefined values. Following is an example where you can see a constructor that initializes the default values of the class.

Class User:

name = ""

def __init__(self, name):

self.name = name

def sayHello(self):

print("Welcome to Guru99, " + self.name

)

User1 = User("Alex")

User1.sayHello()

CHAPTER FOUR

Advance Element of Python

Python is a language used for software development which encompasses exciting features, and that is one major reason you can see python used widely. Above we discussed all the basic functionalities available in Python.

Moving ahead, we will be going through some of multifaceted concepts which are available and being used commonly used to solve complex problems faced by programmers.

Generators

The generator is a concept in Python that yields a arrangement of values which allows us to use it with iteration. We can also use it with the next function to get the upcoming value. The only limitation you face here is that you can iterate over the values only once.

A generator initializes with assistance of ‘yield’ keyword to generate value. Whenever the generator function is called

a generator object is created. Here is an example that gives you a better idea of this concept.

The picture below shows the result of the above code.

Generators are a quick and easy way to calculate values on the fly as well. It is mostly used for simple cases because they do not store the values in memory.

Collections Module

The collections module is a term that refers to the library in Python that implements alternative container data types. In the subsequent example, we will be using a counter, which is a collection in which the elements stored as dictionary keys.

Default Dictionary is one of the distinguished property of python programming. In this language it is regarded as a subclass of dictionary that provides you the provision to pass a factory to initiate a new value automatically when the key is missing. The code snippet below shows how you can use default dictionary to solve complex problems with ease.

The picture below is the result of the code snippet given above.

Morover, the method “defaultdict” is function provided by python that allows us to initiate a tree data structure. The code written below shows how this method could be used for utilizing tree structure in python.

Output:

Itertools Module

Looping is rated among one of the elementary concepts of programming, and that is the reason due to which you can see every programming language makes an effort to make it efficient. Python has also come up with a module that allows the program to create iterators for dynamic looping.

The three different types of Itertools modules are as follows.

-

Permutation

In this type of itertools, the programs get all possible ways of ordering a set of things. Here is an example that shows how you get all the possibilities of order a set of 1,2 and 3.

-

Combinations

In this type of itertools, you get all the possible ways of selecting elements from a collection. The significant difference between both these types is that in this type of collection, the order doesn’t matter.

-

Chain

The third and the last kind of itertools is called the chain.

In this type of itertools, it takes iterables and generates a fresh iterator and returns the results in a single sequence one by one.

Context Managers

A programming language provides tools to ensure that the program appropriately is written to manage the resources.

In Python, you could utilize the Context Managers to perform the above task. In Python, the most common use of the context manager is the opening of a file.

Talking in terms of code Context Manager is a pure class that implements two methods

-

Enter

-

Exit

The code written below illustrates how you can utilize both the functions to manage time.

Decorators

In python, decorators refer to simple functions that take function as parameters and return functions. Here is an example that shows that the cache function is used as a decorator to remember the Fibonacci numbers that were already available.

Packing Unpacking

Python uses the * operator to unpack for convenient transformations. This operator helps to go from list or tuples to separate variables or arguments. Following is an example of extended iterable unpacking.

Python allows to pack all the arguments into one single tuple, and it provides the concept of packing. This keyword packs all the arguments in a different dictionary. This concept is also known as packing. Here is an example that shows how we can pack the arguments in a single tuple.

Exception handling

Errors are a part of programming; thus, it is essential to know the ways through which we can handle them in programming. Errors are categorized into two categories

-

Syntax errors: It means that you have not followed the exact format while writing the code. The picture below shows the syntax error in the code.

Output:

-

Exceptions

If your syntax is correct it doesn’t mean your code is error proof as we have another type of mistakes which is known as exceptions. Even though the statement has no syntax mistakes, it may cause an error while executing. Errors encountered while running is known as exceptions. There are numerous types of exceptions; thus, every time there is an exception, the type of exception is printed along in the statement. The picture below shows some of the common exceptions that you will face while programming in python.

How do we handle the exceptions?

Exceptions handled in Python through try and except blocks. Try, and Except block is a code block that handles the error, it transfers the control to the except block every time there is an error in the program.

Python also offers bock finally after the except block. The final block accomplishes even if the code in the except block is not executed. There are a few occasions when a program itself raises an exception. The code block below shows how an exception raised intentionally.

Error Type

Explanation

IOError

When the file cannot

open

ImporteError

When python is unable

to find the imported

module

ValueError

When the in built

function

receives

a

parameter with the

wrong value

KeyboardInterrrupt

When the user hits

control-C or Delete

EOFError

When a built-in function

goes to the end of the

file without receiving

value.

CHAPTER FIVE

Data Science Elements of Python

Python is a powerful language used in software development that provides some exceptional applications.

Some of the most famous apps are

-

Web Development

-

Desktop GUIs

-

Software Development

-

Business Applications

-

Scientific/Numeric Computing.

Numeric Computing is in use for Data Science, and python is leading the world with its amazing features. Following is a reflection of what Python offers to its users related to data science.

Numpy Arrays

Arrays are a significant part of programming irrespective of the language you are using. It provides you the option of using collection with help of a single variable.

Python also uses arrays for arranging data, but if talk in the numerical calculation, then numpy arrays are beneficial.

Here we will be discussing numpy arrays and show how we can create theses. Numpy is a term that is known for Numerical Python, which is a library that contains multidimensional array objects. Moreover, they also offer a group of procedures for dispensation these arrays. These arrays allow numerical and logical operations to perform on them.

Considering the quantity of data of the modern era, we can say that numpy arrays have proved to be useful because they create arrays with initial placeholder content. This particular element helps in diminishing the want for growing arrays, which becomes an expensive operation as the data grows.

Here is a code snippet that generates a numpy array and prints its contents to users. This example returns a new array of given shape and type with random values.

Output

The table below shows the list of functions that could be performed on numpy arrays.

FUNCTION

DESCRIPTION

empty()

Get a new array of given type and

shape. Without initializing.

empty_like()

Get a original array with the identical shape and type of a specified array

eye()

Returns a 2D array with 1 diagonal and 0 elsewhere

identity()

Get the identity array

ones()

Get an array filled with ones

ones_like()

Get a copy of the given array filled with ones

zeros()

Get array filled with zeros

zeros_like()

Get a copy of given array filled with zeros

full_like()

Get a full array with given type and shape

array()

Initiates an array

asarray()

The input converted to an array

asanyarray()

It will translate the input to a ndarray

ascontiguousarray() Gets a adjoining array in memory asmatrix()

Comprehend the input as a matrix

copy()

Get an array duplicate of the given object

Pandas Data Frames

Pandas are also a significant part of Python. These are high-level data manipulation tools developed upon numpy arrays. It is built upon a fundamental data structure that is known as Dataframes. These DataFrame allow you to standardise and operate tabular data in rows of explanations and column of variables.

Following is one most straightforward method to create a DataFrame.

CONCLUSION

Python is a complete programming language that brings along solutions for many complex problems with some exceptional elements. Numpy arrays and Pandas are specimen of these. These techniques are being used commonly across the globe.

It is just an apprentice’s guide that gives you an idea about how should you go about the language. After going through this book, you need to find some real-world examples and try to solve them through Python.

It is a convenient and easy to learn tutorial that provides you examples along with each concept and could be read offline. Thus it could be read offline but don’t forget to practice the standards along to ensure your ideas grow stronger as you go through the book.

index-59_237.jpg

index-73_3.png
from itertools import combinations

for ¢ in combinations([1, 2, 3, 4], 2):
print(c)

index-59_236.jpg

index-73_2.png
CAWINDOWS\system;

C:\Users\khadi ja. mehmood\Downloads\Python>HelloWor1d. py

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

:\Users\khadija.mehmood\Dowunloads\Python>

index-59_239.jpg

index-74_2.png
from itertools import chain

Lo ¢ i chatn(zange(3), zenge(i2, 19)
| print(c)

index-59_238.jpg

index-74_1.png
CAWINDOWS\system;

C:\Users\khadija.mehmood\Downloads\Python>Hellokiorld. py
(1, 2)
(1, 32)
(1, 4)
(2, 2)
(2, 4)
(ER]

:\Users\khadija.mehmood\Dowunloads\Python>

index-71_2.png
‘ A
C: \Users\khadi ja.mehmood\Downloads\Python>HelloWorld. py

2
Default Value

:\Users\khadija.mehmood\Dowunloads\Python>

index-59_235.jpg

index-73_1.png
from itertools import permutations

for p in permutations([1,2,3]):
print (p)

index-59_234.jpg

index-72_1.png
tem32\cmd.exe

C:\Users\khadi ja.mehmood\Downloads\Python>HelloWor1d. py

{
"page”: {
"Python”: {
"defaultdict™: {
“Title": "Using defaultdict”,
"Subtitle”: "Create a tree”
¥
1.
"Java”: null
¥
i

C: \Users\khadija.mehmood\Downloads\Python>

index-70_2.png
:\Users\khadi ja.mehmood\Downloads\Python>Hellokor1d. py
Counter ({'b 11, uti 1, et 1)
Counter ({1 y e

1, e’i 1, o

(1, 3), Cets 2), (b, 1

:\Users\khadija.mehmood\Dowunloads\Python>

index-70_1.png
from collections import Counter

a = Counter('blue’)
b = Counter ('yellow')

print (a)
print (b)
print((a + b) .most_common(3))

index-71_1.png
from collections import defaultdict
import json

def tree():

Factory that creates a defaultdict that also uses this factory

zeturn defaultdict (tree)

zoot = tree()
root['Page']['Bython']['defaultdict] ['Title'] = 'Using defaultdict’
root['Page']['Bython']['defaultdict'] ['Subtitle'] = 'Create a tree'
root['Page']['Java'l = None

print (3son.dumps (root, indent=4))

index-70_3.png
from collections import defaultdict

my_dict = defaultdict (lambda: 'Default Value')
my_dict['a'] = 42

print (my_aict['a’])
print (my_aict['b'])

index-68_2.png
:\Users\khadi ja.mehmood\Downloads\Python>Hellokorld. py

WUVWNEREGO

C: \Users\khadija.mehmood\Downloads\Python>

index-68_1.png
def fibonacci_generator():
a, b=0,1
while True:
yield a
a, b=b, a+b

Print all the numbers of the Fibonacci sequence that are lower than 1000
£or 1 in fibonacei_generator():
if 1> 1000t
break
print (i)

index-69_2.png
C: \Users\khadi ja. mehmood\Downloads\Python>HelloWor1d. py
<class 'generator’>

328356

o

C: \Users\khadija.mehmood\Downloads\Python>

index-69_1.png
a = (x * x for x in range(100))

a is a ggnerator object
print (vypeka))

Sum all the numbers of the generator
print (sum(a))

There are no elements left in the generator
print (sum(a))

index-64_1.png
Base Class

Features of
5 ’ base class

Derived Class (nherited from base class)

Features of base class
accessible to derived
class because of
inheritance

Feature defined in

derived class

index-62_1.png
2-class myClass():
3° Ldef methodl(self):

4 . print "Guru99"

5 % =

6° idef-method2(self,someString,
Lprint "Software Testing:

: + someString

index-60_2.png
1 def square(x):
return x*x

Here we have vsed

4 ,=print(square(4)) “return command”

54

1 10 retvrn the vave
1 of function, which is
b nonioz sqpare of (4)1¢ o

Users\DK\Desktop\Pyt

.I\

index-59_98.jpg

index-59_97.jpg

index-60_1.png
#define a function
def func1():
print ("I am learning Python Function")
,—erint("still in funciv)
’

i3 Yov are M'Vlg ot another
starenent in same function 6.4 *stil
in func I, make sure it fall vight

a s W e

func1()

¥ dow e £irst print function,
{ oHerwise it Wil sow indent ervor
i

print("still in funci")

IndentationError: unindent does not match any outer indentation level

index-59_99.jpg

index-59_94.jpg

index-59_93.jpg

index-59_96.jpg

index-29_2.png
1 f = 101;
2 print(f)
3 &
40 # Global vs.local variables in functions
3’ def szm:F:n:h’on() : We are now
£ globa R
4 print(ry, © accessing and
"5 G = “chané‘ng global variable'| mg‘mgm
I \
10 someFunction() Y global
L print(f) @ \ variable £.
~o_)
¥ S~
LY \’,\
AN

A comefunction) A .

run Nptnons 3 o \3

p | +V "Ci\Users\DK 0sktop\Pythom code\Python Test\Python 5\Pythe
% s/PythonC)Aes/Python&prl

101 7 7

10147

= changing global variable®

]

index-59_95.jpg

index-29_1.png
:\Users\khadi ja.mehmood\Dounloads> HelloWorld.py
101

[am learning Python
101

:\Users\khadija.mehmood\Downloads>

index-30_10.jpg

index-30_1.jpg

index-30_101.jpg

index-59_92.jpg

index-30_100.jpg

index-30_116.jpg

index-30_115.jpg

index-30_118.jpg

index-30_117.jpg

index-30_12.jpg

index-30_119.jpg

index-30_121.jpg

index-30_120.jpg

index-30_113.jpg

index-30_112.jpg

index-30_114.jpg

index-30_106.jpg

index-30_108.jpg

index-30_107.jpg

index-30_11.jpg

index-30_109.jpg

index-30_111.jpg

index-30_110.jpg

index-30_103.jpg

index-30_102.jpg

index-30_105.jpg

index-30_104.jpg

index-30_134.jpg

index-30_133.jpg

index-30_136.jpg

index-30_135.jpg

index-30_138.jpg

index-30_137.jpg

index-30_14.jpg

index-30_139.jpg

index-30_141.jpg

index-30_140.jpg

index-30_132.jpg

index-30_124.jpg

index-30_126.jpg

index-30_125.jpg

index-30_128.jpg

index-30_127.jpg

index-30_13.jpg

index-30_129.jpg

index-30_131.jpg

index-30_130.jpg

index-30_123.jpg

index-30_122.jpg

index-30_152.jpg

index-30_151.jpg

index-30_154.jpg

index-30_153.jpg

index-30_156.jpg

index-30_155.jpg

index-30_158.jpg

index-30_157.jpg

index-30_16.jpg

index-30_159.jpg

index-30_142.jpg

index-30_144.jpg

index-30_143.jpg

index-30_146.jpg

index-30_145.jpg

index-30_148.jpg

index-30_147.jpg

index-30_15.jpg

index-30_149.jpg

index-30_150.jpg

index-30_170.jpg

index-30_17.jpg

index-30_172.jpg

index-30_171.jpg

index-30_174.jpg

index-30_173.jpg

index-30_176.jpg

index-30_175.jpg

index-30_178.jpg

index-30_177.jpg

index-30_160.jpg

index-30_162.jpg

index-30_161.jpg

index-30_164.jpg

index-30_163.jpg

index-30_166.jpg

index-30_165.jpg

index-30_168.jpg

index-30_167.jpg

index-30_169.jpg

index-30_267.jpg

index-30_266.jpg

index-30_268.jpg

index-30_263.jpg

index-30_262.jpg

index-30_265.jpg

index-30_264.jpg

index-30_26.jpg

index-30_261.jpg

index-30_260.jpg

index-30_257.jpg

index-30_256.jpg

index-30_259.jpg

index-30_258.jpg

index-30_253.jpg

index-30_252.jpg

index-30_255.jpg

index-30_254.jpg

cover_image.jpg
PYTHON FOR
BEGINNERS The
Ultimate Step by
Step Learning

Unknown

index-30_251.jpg

index-30_250.jpg

index-30_58.jpg

index-30_247.jpg

index-30_57.jpg

index-30_246.jpg

index-30_6.jpg

index-30_249.jpg

index-30_59.jpg

index-30_248.jpg

index-30_54.jpg

index-30_243.jpg

index-30_53.jpg

index-30_242.jpg

index-30_56.jpg

index-30_245.jpg

index-30_55.jpg

index-30_244.jpg

index-30_25.jpg

index-30_52.jpg

index-30_241.jpg

index-30_51.jpg

index-30_48.jpg

index-30_237.jpg

index-30_47.jpg

index-30_236.jpg

index-30_5.jpg

index-30_239.jpg

index-30_49.jpg

index-30_238.jpg

index-30_44.jpg

index-30_233.jpg

index-30_43.jpg

index-30_232.jpg

index-30_46.jpg

index-30_235.jpg

index-30_45.jpg

index-30_234.jpg

index-30_240.jpg

index-30_24.jpg

index-30_50.jpg

index-30_42.jpg

index-30_38.jpg

index-30_227.jpg

index-59_140.jpg

index-30_37.jpg

index-30_226.jpg

index-59_14.jpg

index-30_4.jpg

index-30_229.jpg

index-59_142.jpg

index-30_39.jpg

index-30_228.jpg

index-59_141.jpg

index-30_34.jpg

index-30_223.jpg

index-59_137.jpg

index-30_331.jpg

index-59_136.jpg

index-30_36.jpg

index-30_225.jpg

index-59_139.jpg

index-30_35.jpg

index-30_224.jpg

index-59_138.jpg

index-30_41.jpg

index-30_230.jpg

index-30_23.jpg

index-30_40.jpg

index-59_143.jpg

index-30_231.jpg

index-1_1.jpg
[

i b

NSOV~ UDLA WD

v 9y

import os
import simpleknn
from bigfile import BigFile

if _name__ == "_main__":
trainCollection = 'toydata’
nimages = 2
feature = 'fl'
dim = 3

testCollection = t rainCollection

PYTHON

index-20_1.jpg
mmand Prompt

Hicrosoft Windows [Version 10.8.17763.615] ~
(c) 2018 Microsoft Corporation. All rights reserved.

C: \Users\khadija.mehmood>cd Downloads

mood\Downloads> Hellokorld.py

C: \Users\khadija.mehmood\Downloads>

index-1_2.png
BEGINNERS

The Ultimate Step by Step
Learning Guide for Beginners
to Python Programming in
the Best Optimal Way.

ENRIQUE SANCHEZ

index-59_135.jpg

index-25_1.png
Command Prompt

C:\Users\khadi ja.mehmood\Downloads> Hellokorld.py
3

guruge

:\Users\khadi ja.mehmood\Downloads >,

index-23_1.png
def main():
print ("Hello World!

if _name_=="_;
main()

print ("he1lo world pychon wricesh)

index-27_1.png
:\Users\khadi ja.mehmood\Downloads> HelloWorld.py
This is a string 99

:\Users\khadija.mehmood\Downloads>

index-26_1.png
Command Prompt

C:\Users\khadija.mehmood\Downloads> Hellokorld.py
Traceback (most recent call last):
File "C:\Users\khadija.mehmood\Dounloads\Hellokorld.py”, line 3, in <module>
print (a+b)
TypeError: can only concatenate str (not "int") to str

C:\Users\khadi ja.mehmood\Downloads>.

index-28_1.jpg
Declare a variable and initialize it
f =101
print £
Global vs. local variables in functions
def someFunction():
global £
f ='I am learning Python'
print (f)
someFunction()
print (£)

index-30_217.jpg

index-30_326.jpg

index-59_130.jpg

index-30_216.jpg

index-30_325.jpg

index-59_13.jpg

index-30_219.jpg

index-30_328.jpg

index-59_132.jpg

index-30_218.jpg

index-30_327.jpg

index-59_131.jpg

index-30_322.jpg

index-59_127.jpg

index-59_126.jpg

index-30_215.jpg

index-30_324.jpg

index-59_129.jpg

index-30_214.jpg

index-30_323.jpg

index-59_128.jpg

index-30_33.jpg

index-30_220.jpg

index-59_134.jpg

index-30_22.jpg

index-30_329.jpg

index-59_133.jpg

index-30_222.jpg

index-30_221.jpg

index-30_330.jpg

index-30_207.jpg

index-30_316.jpg

index-59_23.jpg

index-59_120.jpg

index-30_206.jpg

index-30_315.jpg

index-59_12.jpg

index-59_229.jpg

index-30_209.jpg

index-30_318.jpg

index-59_122.jpg

index-59_231.jpg

index-30_208.jpg

index-30_317.jpg

index-59_121.jpg

index-59_230.jpg

index-59_117.jpg

index-59_226.jpg

index-59_225.jpg

index-30_205.jpg

index-30_314.jpg

index-59_119.jpg

index-59_228.jpg

index-30_313.jpg

index-59_118.jpg

index-59_227.jpg

index-30_213.jpg

index-30_32.jpg

index-30_210.jpg

index-59_124.jpg

index-59_233.jpg

index-30_21.jpg

index-30_319.jpg

index-59_123.jpg

index-59_232.jpg

index-30_212.jpg

index-30_321.jpg

index-30_211.jpg

index-30_320.jpg

index-59_125.jpg

index-30_198.jpg

index-30_306.jpg

index-59_22.jpg

index-59_110.jpg

index-30_197.jpg

index-30_305.jpg

index-59_11.jpg

index-59_219.jpg

index-30_2.jpg

index-30_308.jpg

index-59_112.jpg

index-59_221.jpg

index-30_199.jpg

index-30_307.jpg

index-59_111.jpg

index-59_220.jpg

index-59_216.jpg

index-30_304.jpg

index-59_109.jpg

index-59_218.jpg

index-59_108.jpg

index-59_217.jpg

index-30_204.jpg

index-30_203.jpg

index-30_312.jpg

index-30_31.jpg

index-30_200.jpg

index-59_114.jpg

index-59_223.jpg

index-30_20.jpg

index-30_309.jpg

index-59_113.jpg

index-59_222.jpg

index-30_202.jpg

index-30_311.jpg

index-59_116.jpg

index-30_201.jpg

index-30_310.jpg

index-59_115.jpg

index-59_224.jpg

index-30_188.jpg

index-30_297.jpg

index-59_21.jpg

index-59_87.jpg

index-59_100.jpg

index-30_296.jpg

index-59_10.jpg

index-59_86.jpg

index-59_209.jpg

index-30_19.jpg

index-30_299.jpg

index-59_89.jpg

index-59_102.jpg

index-59_211.jpg

index-30_189.jpg

index-30_298.jpg

index-59_88.jpg

index-59_101.jpg

index-59_210.jpg

index-59_83.jpg

index-59_1.jpg

index-59_85.jpg

index-59_208.jpg

index-59_84.jpg

index-59_207.jpg

index-30_195.jpg

index-30_303.jpg

index-30_194.jpg

index-30_302.jpg

index-59_107.jpg

index-30_196.jpg

index-30_30.jpg

index-30_191.jpg

index-59_90.jpg

index-59_104.jpg

index-59_213.jpg

index-30_3.jpg

index-30_190.jpg

index-59_9.jpg

index-59_103.jpg

index-59_212.jpg

index-30_193.jpg

index-30_301.jpg

index-59_106.jpg

index-59_215.jpg

index-30_192.jpg

index-30_300.jpg

index-59_91.jpg

index-59_105.jpg

index-59_214.jpg

index-30_98.jpg

index-30_287.jpg

index-59_20.jpg

index-59_77.jpg

index-30_97.jpg

index-59_2.jpg

index-59_76.jpg

index-30_18.jpg

index-30_289.jpg

index-59_79.jpg

index-59_201.jpg

index-35_1.png
C:\Users\khadija.mehmood\Dounloads> Hellokiorld.py
Hello

Hello Python

:\Users\khadija.mehmood\Downloads>

index-30_99.jpg

index-30_179.jpg

index-30_288.jpg

index-59_78.jpg

index-59_200.jpg

index-59_75.jpg

index-59_199.jpg

index-59_74.jpg

index-30_185.jpg

index-30_294.jpg

index-53_1.png
@ Python11.2.py

2 ; Example file for working with conditional statement

; ;ef main():

5 X,y =8, 4

o . Use "else condition” ,

7 if (x < y): N N

8 st = "x is less than y" if there is any

? else: . other ovtcomes yov

) st = "x is greater than y" N

1 print(st) want o print vt

et . . in case yovr "if

12 b dif __name__ _main_ .

14 main() condition” does not

e Q\ves tne expected
resvi

Run * pythont12
;‘ \Users\DK\Desktop\Python code\Python Test

x is greater than y

index-30_184.jpg

index-30_293.jpg

index-59_206.jpg

index-52_1.png
@ Python11.1.py

1 #

2 # Example file for working with conditional statement

;' def main():

5 X, y =8, 4

7 i (x <y It Snows the error
8 st = "x is less than y" !

N print (50) becavse n’dols_ not
10 match ovr "if
11 b if __name__ __main__! fitin

. im0 condition” (i <)
13

12

Fun ettt

» [+ _"C:\Users\DK\Desktop\Python code\Python Test\Python 11\PythonCodell\venv\S
4 [Traceback (most recent call last):

File "C:/Python Code/PythonCodell/Pythonll.l.py", line 12, in <module>

main()

File "C:/Python Code/PythonCodell/Pythonll.l.py", line 9, in main

print(st)
UnboundLocalError: local variable 'st' referenced before assignment

=]
-]
@

X % B

index-30_187.jpg

index-30_186.jpg

index-30_295.jpg

index-30_181.jpg

index-30_290.jpg

index-46_1.jpg
S\system32\cmd.exe

C: \Users\khadija.mehmood\Downloads\Python> Hellokorld.py
(‘a and b is’, False)

(*a or b is’, True)

(‘not a is', False)

C: \Users\khadija.mehmood\Downloads\Python>

index-59_80.jpg

index-59_203.jpg

index-30_29.jpg

index-30_180.jpg

index-45_1.jpg
WINDOWS\system32\cmd.exe

C: \Users\khadi ja.mehmood\Downloads\Python> Hellokorld.py
(‘Line 1 - Result of numi+num2 is *, 9)
(*Line 1 - Result of res += numi is °, 13)

C:\Users\khadija.mehmood\Downloads\Python>

index-59_8.jpg

index-59_202.jpg

index-30_183.jpg

index-30_292.jpg

index-59_82.jpg

index-59_205.jpg

index-49_1.png
:\Users\khadi ja.mehmood\Downloads\Python> HelloWorld.py
&y SAME identity
x & y have DIFFERENT identity

:\Users\khadija.mehmood\Dowunloads\Python>

index-30_182.jpg

index-30_291.jpg

index-47_1.jpg
Users\khadi ja.mehmood\Downloads\Python> Hellokorld.py
ine 1 - x is available in the given list
ine 2 - y is not available in the given list

:\Users\khadija.mehmood\Downloads\Python>

index-59_81.jpg

index-59_204.jpg

index-30_88.jpg

index-59_67.jpg

index-59_190.jpg

index-59_19.jpg

index-59_66.jpg

index-30_9.jpg

index-30_279.jpg

index-59_69.jpg

index-59_192.jpg

index-30_89.jpg

index-30_278.jpg

index-59_68.jpg

index-59_191.jpg

index-59_65.jpg

index-30_95.jpg

index-30_284.jpg

index-59_198.jpg

index-30_94.jpg

index-30_283.jpg

index-59_73.jpg

index-59_197.jpg

index-30_286.jpg

index-30_96.jpg

index-30_285.jpg

index-30_91.jpg

index-30_280.jpg

index-59_70.jpg

index-59_194.jpg

index-30_28.jpg

index-30_90.jpg

index-59_7.jpg

index-59_193.jpg

index-30_93.jpg

index-30_282.jpg

index-59_72.jpg

index-59_196.jpg

index-30_92.jpg

index-30_281.jpg

index-59_71.jpg

index-59_195.jpg

index-30_277.jpg

index-59_57.jpg

index-59_180.jpg

index-59_56.jpg

index-30_8.jpg

index-30_269.jpg

index-59_59.jpg

index-59_182.jpg

index-30_79.jpg

index-59_58.jpg

index-59_181.jpg

index-30_85.jpg

index-30_274.jpg

index-59_64.jpg

index-59_188.jpg

index-30_84.jpg

index-30_273.jpg

index-59_63.jpg

index-59_187.jpg

index-30_87.jpg

index-30_276.jpg

index-30_86.jpg

index-30_275.jpg

index-59_189.jpg

index-30_81.jpg

index-30_270.jpg

index-59_60.jpg

index-59_184.jpg

index-30_27.jpg

index-30_80.jpg

index-59_6.jpg

index-59_183.jpg

index-30_83.jpg

index-30_272.jpg

index-59_62.jpg

index-59_186.jpg

index-30_82.jpg

index-30_271.jpg

index-59_61.jpg

index-59_185.jpg

index-30_78.jpg

index-59_47.jpg

index-30_7.jpg

index-59_49.jpg

index-59_172.jpg

index-59_48.jpg

index-59_171.jpg

index-30_75.jpg

index-59_54.jpg

index-59_178.jpg

index-30_74.jpg

index-59_53.jpg

index-59_177.jpg

index-30_77.jpg

index-59_18.jpg

index-30_76.jpg

index-59_55.jpg

index-59_179.jpg

index-30_71.jpg

index-59_50.jpg

index-59_174.jpg

index-30_70.jpg

index-59_5.jpg

index-59_173.jpg

index-30_73.jpg

index-59_52.jpg

index-59_176.jpg

index-30_72.jpg

index-59_51.jpg

index-59_175.jpg

index-30_69.jpg

index-30_68.jpg

index-59_170.jpg

index-59_39.jpg

index-59_162.jpg

index-59_38.jpg

index-30_65.jpg

index-59_44.jpg

index-59_168.jpg

index-30_64.jpg

index-59_43.jpg

index-59_167.jpg

index-30_67.jpg

index-59_17.jpg

index-59_46.jpg

index-30_66.jpg

index-59_45.jpg

index-59_169.jpg

index-30_61.jpg

index-59_40.jpg

index-59_164.jpg

index-30_60.jpg

index-59_4.jpg

index-59_163.jpg

index-30_63.jpg

index-59_42.jpg

index-59_166.jpg

index-30_62.jpg

index-59_41.jpg

index-59_165.jpg

index-59_161.jpg

index-59_37.jpg

index-59_160.jpg

index-59_29.jpg

index-59_34.jpg

index-59_158.jpg

index-59_33.jpg

index-59_157.jpg

index-59_16.jpg

index-59_36.jpg

index-59_35.jpg

index-59_159.jpg

index-59_30.jpg

index-59_154.jpg

index-59_3.jpg

index-59_153.jpg

index-59_32.jpg

index-59_156.jpg

index-59_31.jpg

index-59_155.jpg

index-59_28.jpg

index-59_151.jpg

index-59_27.jpg

index-59_150.jpg

index-59_152.jpg

index-82_1.jpg
>>>10 * (1/0)
Traceback (most recent call last):
File ™ line 1, in 2
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File ™, line 1, in 2
NameError: name 'spam’ is not defined
>>>2'+ 2
Traceback (most recent call last):
File ™ line 1, in 2
TypeError: cannot concatenate 'sir' and 'int' objects

index-59_148.jpg

index-59_257.jpg

index-59_147.jpg

index-59_256.jpg

index-90_1.jpg
scriptpy 1Python Shell

1 fict = {"country”: ["Brazil”, "Russia”, "India", "China", area capital country population
South Africa’], @ 5516 Brasilia Brazil 200.40

2 “capital”: ["Brasilia”, "Moscou”, “lew Dehli”, 1 1760 toscou Russia 143.50
“Beijing", "Pretoria], 2 3.286 New Dehli India 1252.00

3 area”: [5.516, 17.10, 3.286, 9.597, 1.221], 3 9597 beijing China 1357.00

4 “population”: [200.4, 143.5, 1252, 1357, 52.98] } 4 1.221 Pretoria South Africa 52.98

s

& import pandas as pd 0 [1]:

7 brics - pd.DataFrame (dict)

5 print(brics)

index-59_15.jpg

index-59_26.jpg

index-59_149.jpg

index-59_258.jpg

index-59_144.jpg

index-59_253.jpg

index-84_1.png
except IOError:
print(*An error occured trying to read the file.')

except ValueError:
print (*Non-numeric data found in the file.

except ImportError:
print "NO module found"

except EOFErro:
print (*Why did you do an EOF on me?')

except KeyboardInterrupt:
print (*You cancelled the operation.

except:

print(*An error occured.’)
N

index-59_252.jpg

index-82_2.png
try:
print "Hello World"

except:
print "This is an error message!

index-59_146.jpg

index-59_255.jpg

index-88_1.png
© 1079574528]

index-59_145.jpg

index-59_254.jpg

index-87_1.png
f Python Programming illustrating
numpy.empty method

import numpy as geek

b = geek.empty(2, dtype = int)
print("Matrix b : \n", b)

2 = geek.empty([2, 2], dtype = int)
print("\nMatrix a : \n", a)

c = geek.empty([3, 3])
print ("\nMatrix ¢ : \n", c)

index-59_250.jpg

index-81_2.png
C:\Users\khadi ja. mehmood\Downloads\Python>Hellokor1d. py
File "C:\Users\khadija.mehmood\Dounloads\Python\HelloWor1d.py”, line 1
while True print 'Hello world®

Syntaxerror: invalid syntax

C: \Users\khadija.mehmood\Downloads\Python>

index-59_25.jpg

index-81_1.png
while True print 'Hello world'

index-59_251.jpg

index-59_247.jpg

index-79_2.png
C:\Users\khadi ja. mehmood\Downloads\Python>HelloWor1d. py
Call function repeat using a list of arguments
cats

cats
cats
cats
Call function repeat using a dictionary of keyword arguments
cats
cats
cats
cats

C: \Users\khadija.mehmood\Downloads\Python>

index-59_246.jpg

index-79_1.png
def repeat(count, name):
for 1 in range(count):
print (name)

print("Call function repeat using a list of arguments
args = [4, "cats”]
repeat (*azgs)

print("Call function repeat using a dictionary of keyword arguments
kwargs = {'count': &, 'name’: ‘cats'}
zepeat (**kwazrgs)

index-59_249.jpg

index-80_1.png
:\Users\khadi ja.mehmood\Downloads\Python>Hellokor1d. py
Arguments: (3, 4, 9)
Keyword arguments: {'foo': 42, 'bar': 7}

:\Users\khadija.mehmood\Dowunloads\Python>

index-59_248.jpg

index-79_3.png
def f(*args, **kwargs
print ("Arguments: ", args)
print ("Keyword arguments: ", kwargs)

£(3, 4, 9, foo=42, ba

)

index-59_243.jpg

index-77_1.png
CAWINDOWS\system;

C:\Users\khadi ja. mehmood\Downloads\Python>HelloWor1d. py
calling fibonacci(1)
calling fibonacci(2)
calling fibonacci(e)
calling fibonacci(3)
calling fibonacci(a)
calling fibonacci(s)
calling fibonacci(6)
calling fibonacci(7)
calling fibonacci(s)

[1, 1, 2, 3, 5, 8, 13, 21]

:\Users\khadija.mehmood\Dowunloads\Python>

index-76_2.jpg
=% cache(function):
cached values = {} # Contains already computed values
et wrapping_function(*args):
if args mot in cached values:
Call the function only if we haven't already done it for those par
cached_values[args] = function(*args)
zetuzn cached_values(args]
zetuzn wrapping function

@cache
d=s fibonacei(n):
print('calling fibonacci(sd)' % n)
itncaz
zeturn
fibonacei(n-1) + fibonacei (n-2)

zetw

print([fibonacci(n) for m in range(l, 9)1)

index-59_245.jpg

index-78_1.png
CAWINDOWS\system;

C:\Users\khadi ja.mehmood\Downloads\PythonsHelloWor1d. py
2

(7, 5, 6, 3, 4]

1

C: \Users\khadija.mehmood\Downloads\Python>

index-59_244.jpg

index-77_2.png
a, *b, ¢ =12, 7, 5 & 3, 4 1]
print (a)
print (b)
print(c)

index-59_240.jpg

index-75_1.jpg
from time import time

class Timer():
et _init_ (self, message):
Self.message = message

cef _enter_ (self):
Self.start = time()
zeturn None # could return anything, to be used like this:

des _exit_(self, type, value, tracsback):
clapsed time = (time() - self.starc) * 1000
print(self.message.format (elapsed_vime))

with Timer("Elapsed time to compute some prime numbers: {jms”
primes = [1
for x in range(2, 500):
if not any(x $ p = 0 &
primes.append (x)
print("Primes: {}".format (primes))

p in primes):

with Timer("

index-59_24.jpg

index-74_3.png
CAWINDOWS\system;

C:\Users\khadi ja.mehmood\Downloads\Python>HelloWor1d. py

:\Users\khadija.mehmood\Dowunloads\Python>

index-59_242.jpg

index-59_241.jpg

index-76_1.jpg
C:\Users\khadi ja.mehmood\Downloads\PythonsHelloWorld. py

Primes: [2, 3,s, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
100, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 367, 311, 313,
389, 307, 461, 409, 419, 421, 431, 433, 430, 443, 449, 457, 461,
Elapsed time to compute some prime numbers: @.9992122650146484ms

C:\Users\khadi ja.mehmood\Downloads\Pythons

53, 59, 61, 67, 71,
181, 191, 193, 197,
317, 331, 337, 347,
463, 467, 479, 487,

73, 79, 83, 89, 97,
100, 211, 223, 227,
349, 353, 350, 367,
401, 299]

101,
229,
373,

103,
PEEN
379,

107,
239,
ECEN

