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Abstract Proteins play a pivotal role in biological systems. The use of machine learning algorithms for

protein classification can assist and even guide biological experiments, offering crucial insights for biotech-

nological applications. We introduce the support bio-sequence machine for proteins (SBSM-Pro), a model

purpose-built for the classification of biological sequences. This model starts with raw sequences and groups

amino acids based on their physicochemical properties. It incorporates sequence alignment to measure the

similarities between proteins and uses a novel multiple kernel learning (MKL) approach to integrate various

types of information, utilizing support vector machines for classification prediction. The results indicate

that our model demonstrates commendable performance across ten datasets in terms of the identification of

protein function and post translational modification. This research not only exemplifies state-of-the-art work

in protein classification but also paves avenues for new directions in this domain, representing a beneficial

endeavor in the development of platforms tailored for the classification of biological sequences. SBSM-Pro is

available for access at http://lab.malab.cn/soft/SBSM-Pro/.

Keywords protein classification, machine learning, multiple kernel learning, sequence alignment

1 Introduction

Bio-sequences, including DNA, RNA, and proteins, are the basis of genetic research. With the accumu-
lation of extensive genomic data, there is an urgent need for computer-assisted function annotation. Due
to the complex relationship between genetic sequences and diseases, multiple computer predictions are
necessary to assist laboratory research. Bio-sequence classification is a valuable tool that helps researchers
understand and analyze biological sequences. It serves as a key driving force for advancing research in
the field of bioinformatics.

In the field of bio-sequence classification, machine learning methods are broadly pursued using two
strategies: feature extraction combined with traditional classification methods and direct sequence clas-
sification via deep learning techniques.

For bio-sequences, relevant features are mainly characterized as frequency, physicochemical, structural,
and evolutionary features [1]. Several notable tools for sequence feature extraction include PseKNC-
General [2], PyFeat [3], iFeature [4], VisFeature [5], POSSUM [6], Rcpi [7], and Protr [8]. Furthermore,
every alphabet in the sequence, whether amino acids or nucleotides, can be numerically represented,
thereby contributing to the global feature of the sequence [9–11].

After completing feature extraction, protein structure and function recognition can be achieved through
machine learning. Among the algorithms that have shown excellent performance and are widely used
in recent research, random forests (RF) [12] and support vector machines (SVM) [13, 14] are notable
examples. Given these traditional numerical classification features, classifiers can be integrated to facili-
tate the classification and discrimination of biological sequences. This led to the emergence of platforms
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that combine feature extraction and classifiers, such as gkmSVM [15], iLearnPlus [16], Biological Seq-
Analysis 2.0 [17], and BioSeq-BLM [18]. Notably, gkmSVM was one of the first to use kernel methods
for biological sequence predictions, with the most common frequency feature being k-mer, and yielded
promising results in certain scenarios, such as predicting enhancer activity in specific cell types [19] and
disease-relevant mutations [20]. However, the performance of gkmSVM frequently falls short due to its
exclusive reliance on rudimentary k-mer features and its susceptibility to overfitting. Both iLearnPlus
and Biological Seq-Analysis 2.0 offer a rich array of feature extraction and analysis methods, making
them more commonly employed in biological sequence classification research compared to traditional
tools. However, these tools do not account for sequence structural information.

Deep learning-based methods circumvent the need for feature extraction by directly encoding sequences
into neural networks. Through training, the architecture and parameters of the network are fine-tuned,
enabling it to classify the training samples effectively. The most renowned application of this approach
is AlphaFold2’s [21] prediction of protein 3D structures, facilitated by the advent of cryo-electron mi-
croscopy, which provides a wealth of 3D structural samples for AI training. Platforms such as Kipoi [22],
Pysster [23], Selene [24], and DNA-BERT [25] have been developed for deep learning-based classification
of biological sequences. Inspired by biological processes, convolutional neural networks (CNNs), whose
connectivity patterns between neurons resemble those of the animal visual cortex, are commonly used for
various sequence data to learn the inherent regularities [26–33] and specificities [34] within gene sequences.
By reincorporating newly discovered sequence motifs into the neural network model and continuously up-
dating the model’s predictive scores, accuracy in predicting sequence specificity can be improved, enabling
the analysis of potentially pathogenic genomic variations. Recurrent neural networks (RNNs) accumulate
sequence information over time, and the bidirectional LSTM proposed based on it also achieved good
results [35]. Hybrid predictive models combining both CNNs and RNNs are currently popular and have
been applied in various computational biology domains, including DNA methylation [36], chromatin ac-
cessibility [37], and noncoding RNAs [38]. With the application of new technologies from the field of
natural language processing to biological sequence analysis, protein pre-trained language models have
performed well in tasks related to the recognition of protein structure and function [39].

Classical CNNs and RNNs, as well as more recently celebrated transformer architectures like BERT [40,
41] and GPT, have their origins in domains like image analysis (for tasks such as face recognition or
autonomous driving) and natural language processing. However, there is no universal algorithm or
framework specifically tailored for biological sequence data. The development of custom algorithms
specifically designed for these types of data and problems represents one of the most exciting prospects
in bioinformatics. Conventional machine learning approaches, despite their advantage in facilitating the
development of user-friendly predictive software platforms through numerical feature extraction, have
limitations. Relying solely on word frequency, physicochemical, and evolutionary features fall short in
capturing the full spectrum of sequence information, thus invariably imposing a ceiling on prediction
accuracy. On the other hand, deep learning-based approaches pose unique challenges. They demand a
substantial volume of training data to avoid overfitting, and the complexity of deep learning software
packages can detract from the user-friendliness of the sequence classification platform.

In response to the challenges encountered by the aforementioned research approaches, building on the
strengths of SVM, especially their prowess in effectively managing small sample problems, we present
an innovative methodology termed the SBSM-Pro. In this paper, we make several key contributions to
the field, which are given as follows. (i) We propose a novel standard process named physicochemical
properties-spectral clustering-dictionaries (PSD) that effectively reduces the amino acid alphabet. This
process facilitates sequence alignment and accurately represents the distances between proteins, thereby
linking the physicochemical properties of proteins with their sequences. (ii) We introduce two methods for
calculating sequence similarity kernels, namely, the Levenshtein (LS) distance and the Smith–Waterman
(SW) score. These techniques allow for precise comparisons between protein sequences. (iii) We present a
new MKL approach that combines global and local kernels, thus effectively integrating multiple similarity
kernels. This distinctive method optimizes the processing and understanding of protein data. (iv) We
employ an SVM with a precomputed kernel to receive the fused sequence kernels for protein prediction.
This machine learning model ensures efficient and precise prediction. These combined contributions
present a comprehensive and innovative approach to the analysis and prediction of protein sequences.
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Figure 1 (Color online) Overview of SBSM-Pro. (a) Processing 10 datasets to obtain labels and samples; (b) collecting and

processing data on amino acid physicochemical properties; (c) re-encoding sequences using the PSD process; (d) generating sequence

kernels using LS distance and SW score; (e) applying HCKDM-MKL to generate fused training and testing kernels; (f) training

and testing SVM.

2 Materials and methods

In this section, we will delve into the methodologies associated with SBSM-Pro. Figure 1 provides an
overview of SBSM-Pro. The first step involves collecting relevant datasets for protein identification.
After collecting these datasets, they underwent processing, resulting in the creation of multiple sets of
protein samples with their respective labels. Subsequently, we retrieved physicochemical property data
of amino acids from the available literature. These data were also preprocessed. Finally, the amino
acid physicochemical properties were subjected to spectral clustering, giving rise to the dictionaries for
grouping. The original protein sequences were then transformed into re-encoding sequences by amino
acid grouping in accordance with the corresponding dictionary. To gauge the similarity among these
reencoding sequences, we employed sequence alignment techniques along with dynamic programming
methods. Central kernels were derived by applying suitable kernel processing techniques. We proposed
an innovative MKL strategy to fuse these central kernels. The fused central kernel was subsequently fed
into SBSM-Pro for classification, ultimately leading to the final classification outcome.

2.1 Datasets

To evaluate SBSM-Pro, we collected 10 different protein classification datasets, including the identification
of protein functions and posttranslational modifications (PTMs). The datasets encompass various protein
functionalities, such as DNA-binding proteins (DBPs) [42], type III secreted effectors (T3SEs) [43], and
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Table 1 Summary of datasets utilized in the research

Dataset Description
Training set Testing set

Positive Negative Positive Negative

DBP DNA-binding proteins 525 550 93 93

T3SE Type III secreted effectors 309 310 42 34

PVP Phage virion proteins 99 208 30 64

PTSS Protein tyrosine sulfation sites 200 420 80 80

PSNS Protein S-nitrosylation sites 731 810 43 121

PLGS Protein lysine glutarylation sites 400 1703 44 203

PCS1 Protein carbonylation sites 1 300 1949 - -

PCS2 Protein carbonylation sites 2 126 792 - -

PCS3 Protein carbonylation sites 3 136 847 - -

PCS4 Protein carbonylation sites 4 121 732 - -

phage virion proteins (PVPs) [44], contributing to our understanding of genetic encoding, host–pathogen
interactions, and virus–host relationships, respectively. Regarding PTMs, we considered protein tyro-
sine sulfation sites (PTSS) [45], protein s-nitrosylation sites (PSNS) [46], protein lysine glutarylation
sites (PLGS) [47], and protein carbonylation sites (PCS) [48]. These PTMs play significant roles in
modifying the behavioral properties of proteins and are implicated in numerous cellular processes, in-
cluding metabolic regulation, redox reactions, and biological processes linked with various diseases. These
datasets allow for a comprehensive evaluation of our SBSM-Pro, providing robust validation of our model
through the identification of protein function and PTMs.

We collected a set of commonly used datasets for protein classification, including 3 for protein function
identification and 7 for PTM identification. We then analyzed the protein sequence lengths and presented
them as a box plot, as detailed in Appendix A. It is worth noting that the protein sequence lengths in
each PTM identification dataset are consistent. However, the lengths of sequences for protein function
identification vary.

In assessing two machine learning algorithms, it is crucial to employ the same training and testing
sets for evaluation. This methodology eliminates variations that may arise from different data partitions,
ensuring a reliable and fair comparison between algorithms. In our study, we categorized the collected
datasets into two types: Type I and Type II. With regards to Type I datasets, it has been a customary
practice in previous research to assess models using pre-partitioned datasets. We adhered to this practice
to guarantee fairness in the comparison of the algorithms. Type II datasets, in contrast, do not have a
predefined division into training and testing sets. For these datasets, we utilized the method of 10-fold
cross-validation for model evaluation, in line with approaches utilized in prior studies.

The fundamental step of cross-validation involves partitioning the entire dataset into K subsets. In
each iteration, one subset is designated as the testing set, while the remaining K-1 subsets serve as the
training set, yielding model evaluation outcomes. This process is executed K times, ensuring a different
testing set for each run. Consequently, K-model evaluation outcomes are obtained, and the final model
performance assessment is derived from their average. A summary of datasets is shown in Table 1.

2.2 Amino acid grouping

For a specific amino acid with distinct physicochemical properties, we employ spectral clustering to
perform clustering analysis and CHI to evaluate the clustering effect, as detailed in Appendix A. The
clustering process results in the formation of kc clusters, each containing at least one amino acid. We
consider each cluster as a distinct group, defined as a set. An illustrative example is provided below:

G1 = {A,W} , (1)

where A and W respectively represent Alanine and Tryptophan.
Due to the existence of kc clusters, there are kc sets, similar to those in (1). These sets satisfy the

following equation:

AA =
k⋃

i=1

Gi, (2)

where AA represents a set of 20 amino acids.
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Next, we consider kc groups as kc dictionary entries and include them in a set, resulting in the formation
of dictionaries for grouping that is defined as follows:

D1 = {G1, · · · , GK} . (3)

In accordance with a specific dictionary, amino acid residues of the original protein sequence are
replaced by the group number in which they are located, resulting in the re-encoding protein sequence.

The physicochemical properties of amino acids are obtained through data processing, the specific details
of which can be found in Appendix A, and then the corresponding clustering results are achieved through
spectral clustering. According to the clustering results, dictionaries for grouping can be generated. There
is a one-to-one correspondence between them. We define this standard process as PSD. The PSD process
reduces the alphabet of the original protein sequence. In biology, amino acid residues within proteins may
undergo substitutions. However, some of these substitutions may have minimal impact on the protein’s
function or even no effect at all. By grouping amino acids using PSD, we can reduce such noise, facilitating
subsequent sequence alignment. Additionally, this approach can link the original sequence of the protein
to its structure, enabling a more accurate representation of the distances between proteins.

2.3 Generating sequence kernels

In the previous section, we re-encoded the protein sequences. In this section, we generate the SW score [49]
and LS distance through sequence alignment and dynamic programming, respectively, as detailed in
Appendix A. Subsequently, a series of transformations, such as normalization and centralization, are
applied to produce the sequence similarity kernel.

The following equation presents the normalized SW score for the protein sequences Sx and Sy:

SW∗ (Sx, Sy) =
SW(Sx, Sy)

max (lx, ly)
, (4)

where SW (Sx, Sy) and SW∗ (Sx, Sy) represent the original and normalized SW scores, respectively. Mean-
while, lx and ly correspond to the lengths of protein sequences Sx and Sy, respectively.

By computing the SW scores between all pairs of sequences in the sample set, we store the results in
the symmetric matrix KSW, thus obtaining a protein similarity kernel based on the SW algorithm.

The LS distance, also known as the edit distance, is a widely used metric for measuring the dissimi-
larity between two strings. It quantifies the minimum number of single-character operations required to
transform one string into another. These operations include insertion, deletion, and substitution.

LS distance and the SW algorithm both use dynamic programming to calculate the similarity between
two strings. The former measures the minimum number of editing operations needed to transform one
string into another, while the latter calculates the highest score of all possible local sequence alignments,
rather than the overall edit distance. Compared to the SW algorithm, which can be optimized by
adjusting scoring settings to suit specific types of sequence alignment tasks, the LS distance generally
does not involve complex scoring mechanisms for character matching. When calculating the LS distance
between two protein sequences Sx and Sy, each with lengths lx and ly respectively, a matrix M ∈ Rlx×ly

is initially generated. The matrix serves as a dynamic programming table that stores the intermediate
distances between substrings. Initialization of the matrix involves setting the first row and column to the
respective indices, representing the cost of transforming an empty string into the corresponding prefix or
vice versa. The subsequent entries in the matrix are filled iteratively by comparing characters at each
position and determining the minimum cost of transforming the prefixes. The final value in the bottom
right corner of the matrix represents the LS distance between the two input strings. The LS distances
for all protein sequence pairs were calculated, resulting in the LS distance matrix, DLS.

Given that the LS distance measures the dissimilarity between two protein sequences, a protein similar-
ity kernel based on the LS distance KLS can be obtained through normalization methods. The equation
is as follows:

KLS = 1−
DLS −min(DLS)

max(DLS)−min(DLS)
, (5)

where max(DLS) and min(DLS) represent the maximum and minimum elements in the matrix DLS,
respectively.



Wang Y Z, et al. Sci China Inf Sci November 2024, Vol. 67, Iss. 11, 212106:6

2.4 Multiple kernel learning

MKL methods have gained significant attention in the field of machine learning due to their ability to
effectively model complex relationships in data [50]. These methods extend the traditional single kernel
approach by combining multiple kernels to capture information on different aspects of the data. By
employing MKL methods, we are able to leverage complementary information from different feature
representations, leading to improved predictive performance. In the MKL model, the fused kernel is
derived by determining the kernel weights.

For a dataset comprising N samples, we construct a set of p kernel matrices by building the LS kernel
and the SW kernel, as defined below:

K = {K1,K2, · · · ,Kp} ,Kp ∈ RN×N . (6)

The objective of MKL is to determine the kernel weights, denoted as β. Its definition is as follows:

β = [β1, β2, · · · , βp] . (7)

For a set of N training samples, there are corresponding sample labels represented by L ∈ RN×1.
These labels are transformed into a one-hot encoding, denoted as Ytrain. We define the target kernel as
U ∈ RN×N , with its equation given as follows:

U = YtrainY
T
train. (8)

The Hilbert-Schmidt Independence Criterion (HSIC) provides an efficient, non-parametric method for
independence testing [51]. And it has been widely applied in areas such as feature selection, causality
testing, and variable independence verification [52], with its introduction found in Appendix B.

Then, we define I as the identity matrix, and it satisfies I ∈ RN×N . By defining e = [1, 1, · · · , 1]T ∈
R1×N , we can obtain

H ≡ I−
eeT

N
. (9)

We measure the dependence between two matrices using HSIC, with the equation shown below:

HSIC(K,U) =
1

N2
tr(KHUH), (10)

where K,U ∈ RN×N are kernel matrices, k (xi,xj) and l (yi, yj). It’s important to note that the value of
HSIC(K,U) is associated with the dependence between K and U, and a higher value indicates a stronger
dependence between the two. In addition, it should be in the range of 0 to 1. When it is equal to 0, we
think that K and U are independent or irrelevant.

First, we centralize the acquired kernel matrix to normalize the data, ensuring that the similarity or
distance of each data point consistently influences the results. Moreover, by subtracting the mean values
of rows and columns, the centered kernel emphasizes the similarity information. All these steps enhance
the effectiveness of MKL algorithms. The equation is as follows:

(
K̂p

)
i,j

= (Kp)i,j −
1

N

N∑

i=1

(Kp)i,j −
1

N

N∑

j=1

(Kp)i,j +
1

N2

N∑

i,j=1

(Kp)i,j , (11)

where Kp represents the original kernel of the pth similarity kernel and K̂p denotes the centered kernel.
In the method of global kernel alignment, every pair of samples are forcibly aligned to the same level of

similarity, regardless of the distance between them. This approach overlooks the diversity within classes
and may lead to insufficient capture of subtle variations in sample features in practical applications,
potentially missing important classification information and affecting the overall performance. The local
kernel alignment method, by considering only the nearest neighbors of each sample to compute the
alignment of the kernel, focuses more on the local structure of the data, which helps in capturing the
subtle differences in the data [53, 54]. Hybrid central kernel dependence maximization multiple kernel
learning (HCKDM-MKL) leverages both global and local kernels as they are complementary to each other.
The schematic of this method is shown in Figure 2. Before using HSIC to measure all sample local kernels
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Figure 2 (Color online) Overview of HCKDM-MKL. (a) Measuring local dependence; (b) measuring global dependence;

(c) generating regularization terms.

and label kernel, we first define Ilocal ∈ Rk×k as the identity matrix and elocal = [1, 1, · · · , 1]
T
∈ R1×k.

We can then calculate the quadratic matrix by the following equation:

Hlocal ≡ I−
elocale

T
local

N
∈ Rk×k. (12)

First, calculate the average matrix of all sample matrices. For a given sample i, sort all samples by
their similarity to sample i in descending order and select the top k samples with the highest similarity
as the nearest neighbors of sample i. Then, extract the corresponding rows and columns from the Center
kernel and label kernel matrices to obtain K̂∗(i) and U(i) respectively. Then, the dependence measures of
local and label kernels for all samples Mlocal can be calculated by HSIC, whose equation is shown below:

Mlocal =
1

N

N∑

i=1

HSIC
(
K̂∗(i),U(i)

)
=

1

N

N∑

i=1

1

k2
tr

(
K̂∗(i)HlocalU

(i)Hlocal

)
. (13)

In contrast to local kernels, global kernels are employed to globally represent the characteristics of
all kernel functions. To ensure compatibility in matrix dimensions during multiplication, it is neces-
sary to initially define Iglobal ∈ RN×N ∈ RN×N as the identity and eglobal = [1, 1, · · · , 1]

T
∈ R1×N .
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Subsequently, we compute the centering matrix according to the equation presented below:

Hglobal ≡ I−
eglobale

T
global

N
∈ RN×N , (14)

Mglobal = HSIC
(
K̂∗,U

)
=

1

N2
tr

(
K̂∗HglobalUHglobal

)
. (15)

R1 is the L2 norm regularization, and the equation is as follows:

R1 = ν1‖β‖
2
. (16)

We define the Frobenius inner as
〈K,U〉F = tr

(
KT ,U

)
. (17)

Then, we defined W as the cosine similarity matrix between two kernels satisfying W ∈ RP×P , and
the equation is as follows:

Aligned (K,U) =
〈K,U〉F

‖K‖F ‖U‖F
, (18)

where ‖K‖F =
√
〈K,K〉F is the Frobenius norm. DK is defined as a diagonal matrix that satisfies

W ∈ RP×P , and its elements can be calculated as

[DK ]i,j =

p∑

j

[W ]i,j . (19)

Then, the graph Laplacian matrix Lk is defined as

Lk = Dk −W. (20)

We can write the Laplacian regular term as

p∑
i,j

(βi − βj)
2
Wij =

p∑
i,j

(
β2
i + β2

j − 2βiβj

)
Wij

=
p∑
i

β2
iDii +

p∑
j

β2
jDjj − 2

p∑
i,j

βiβjWij

= 2βTLKβ.

(21)

We define R2 as the graph regularization term, which assists in smoothing the weights. The equation
is as follows:

R2 = βTLKβ. (22)

We combine the regularization terms R1 and R2 to obtain the final regularization term R as follows:

R = R1 +R2 = ν1‖β‖
2
+ ν2β

TLKβ. (23)

Hence, we define a new kernel dependence measuring approach that concurrently considers global and
local kernel dependence measurements and uses a parameter λ (0 6 λ 6 1) to establish a trade-off between
these two types of kernel alignment. The hybrid dependence measuring between two kernel matrices is
as follows:

maxλMlocal + (1− λ)Mglobal −R. (24)

Then, our method is transformed into an optimization problem, and the optimized fusion kernel can
be obtained by maximizing the hybrid dependence, whose equation is shown as follows:

max
β,K̂∗

λ 1
N

N∑
i=1

1
k2 tr

(
K̂∗(i)HlocalU

(i)Hlocal

)
+ (1− λ) 1

N2 tr
(
K̂∗HglobalUHglobal

)

−ν1‖β‖
2
− ν2β

TLKβ,

s.t. K̂∗ =
p∑

i=1

βiK̂i,

p∑
i=1

βi = 1,

βi > 0.

(25)
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2.5 Support vector machine with precomputed kernel

The similarity kernel obtained from MKL first needs to be parameterized to be compatible with the
SVM. Kernel parameterization offers the advantage of enhancing the performance of classifiers or re-
gressors without increasing the computational complexity by mapping the data to a higher-dimensional
feature space. Additionally, it can better handle nonlinear relationships among high-dimensional data
and samples, thereby expanding the application scope of traditional linear methods. The kernel function
of the i-th sequence is defined as.

K (x,xi) = exp

(
α
s (x,xi)− bi

bi

)
, (26)

where s (x,xi) is a pairwise similarity measurement between x and xi , bi is the maximum similarity
measurement associated with the i-th support sequence and α is a constant.

The given equation represents the dual form of the SVM optimization problem.

max
α

m∑
i=1

αi −
1
2

m∑
i=1

m∑
j=1

αiαjyiyjK̂
∗ (xi,xj),

s.t.
m∑
i=1

αiyi = 0,

0 6 αi 6 C, i = 1, 2, . . . ,m.

(27)

This function is maximized with respect to α, which is a vector of Lagrange multipliers. The first term
of the objective function is the sum of all αi from 1 to m. The second term is the dot product of the
feature vectors xi and xj scaled by the corresponding αi, αj , and the labels yi, yj , summed over all pairs

of data points. Through HCKDM-MKL, we obtain the fused kernel matrix K̂∗, which corresponds to the
kernel function K̂∗ (xi,xj).

The first constraint ensures that the sum of αi times the corresponding yi (the label of each data point)
over all data points equals zero. The second constraint bounds each αi to be nonnegative and no larger
than a constant C for all data points. The constant C is a parameter for the SVM that controls the
trade-off between maximizing the margin and minimizing the classification error.

3 Results and discussion

3.1 Performance metrics

We employed several widely recognized and indispensable performance metrics for classification models,
including accuracy (ACC), true positive rate (TPR) and true negative rate (TNR). TPR, also known
as Recall, represents the model’s ability to correctly identify positive instances, while TNR indicates
the model’s capability to accurately identify negative instances. These metrics were chosen to provide a
comprehensive evaluation of our model’s performance:

TPR =
TP

FN + TP
, (28)

TNR =
TN

FP + TN
, (29)

ACC =
TP + TN

TP + TN+ FP + FN
, (30)

where TP, TN, FN, and FP denote the number of true positives, true negatives, false negatives, and false
positives, respectively.

3.2 Comparative analysis

To achieve a significant breakthrough with SBSM-Pro, we compared it with the leading contemporary
models to evaluate its effectiveness. To demonstrate the robustness of SBSM-Pro, we selected ten com-
monly used protein classification datasets. The results are shown in Table 2 and Figure 3.
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Table 2 Comparison of the proposed method and existing methods

Dataset
SBSM-Pro Existing methods

TPR TNR ACC TPR TNR ACC

DBP 0.9140 0.8710 0.8925 0.968 0.538 0.753

T3SE 0.9048 0.7353 0.8289 0.93 0.71 0.83

PVP 0.7000 0.8906 0.8298 0.6670 0.8590 0.7980

PTSS 0.9375 0.8625 0.9000 0.8875 0.8250 0.8563

PSNS 0.6047 0.8017 0.7500 0.6047 0.7769 0.7317

PLGS 0.7313 0.8778 0.8381 0.7273 0.7192 0.7207

PCS1 0.6983 0.9038 0.8737 0.4518 0.9925 0.8443

PCS2 0.6902 0.9150 0.8791 0.4820 0.9854 0.8679

PCS3 0.7536 0.8910 0.8687 0.4667 0.9957 0.8423

PCS4 0.7204 0.8976 0.8699 0.5068 0.9858 0.8617

Figure 3 (Color online) Comparison of multiple performance metrics between the proposed method and existing methods.

The previously established method for the DBP dataset, introduced by Lu et al. [42], is a model
founded on SVM. This model extracts evolutionary features and concatenates them as input for the
model. However, due to its exclusive emphasis on evolutionary features, this model overlooks certain
information. The results show that SBSM-Pro surpassed existing methods in TNR, while it was weaker
than existing methods in TPR. However, overall, SBSM-Pro achieved an ACC that was 0.1853 higher
than the existing methods.

Hui et al. [43] developed the T3SEpp model, which exhibits the best performance with the T3SE
dataset. This model integrates both traditional machine learning models, such as SVM and RF, and
deep learning models, such as fully connected neural networks and convolutional neural networks. The
performance of SBSM-Pro is on par with that of T3SEpp. It is important to note that due to numerical
precision differences resulting from retaining significant figures, the performance of SBSM-Pro is not
necessarily inferior to that of T3SEpp.

For the PVP and PTSS datasets, the models proposed by Meng et al. [44] and Barukab et al. [45] are
currently the best. Both models primarily utilize amino acid composition information, with the former
additionally incorporating feature selection algorithms. SBSM-Pro outperforms existing methods across
various metrics, with an ACC approximately 3.98% and 5.10% higher than current methods.

Li et al. [46] employed a set of nine features, including the parallel correlation pseudo amino acid
composition and adapted normal distribution bi-profile Bayes, to identify PSNS. This model accounts for
a rich set of information, subsequently employing the method of information gain for feature vector selec-
tion. However, SBSM-Pro, benefiting from the use of original protein sequences which avoids information
loss, surpasses existing methods on various indicators, with a 2.50% increase in ACC.

Dou et al. [47] developed iGlu AdaBoost, a tool designed for the identification of PLGS. This model in-
tegrates three feature representation methods: a 188-dimensional feature, the position of K-spaced amino
acid pairs, and the enhanced amino acid composition. By applying feature selection, a 37-dimensional op-
timal feature subset was obtained, and predictions were performed using AdaBoost. SBSM-Pro surpasses
existing methods in the three indicators of TPR, TNR, and ACC.

The iCar-PseCp [48] is utilized for the identification of PCSs, employing sequence coupling effects to
describe the sequence order with the aim of preserving more information from the original sequence. With
the ACC of SBSM-Pro surpassing Existing Methods comprehensively, the TPR of SBSM-Pro is higher
than that of existing methods, while the TNR is lower. It is worth noting that all four datasets are for
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Figure 4 (Color online) Overview of the PSD process. (a) Heatmaps of grid search parameters tuning in spectral clustering;

(b) visual representations of dictionaries for grouping.

PCS identification. Therefore, a higher TPR implies the ability to detect more PCS, demonstrating that
SBSM-Pro has higher practical value.

In summary, when compared with SBSM-Pro, some models incorporate features from multiple di-
mensions, encompassing a wealth of information. However, they still inevitably suffer from information
loss during feature extraction and selection. On the other hand, other models employ deep learning
techniques, but this leads to overfitting. Across 10 commonly used amino acid classification datasets,
SBSM-Pro generally outperforms existing methods, effectively demonstrating its superior performance,
generalizability, and robustness.

3.3 Creating dictionaries for amino acid grouping by using spectral clustering

The hyperparameters γ in the Gaussian kernel function and kc in the K-means clustering algorithm need
to be specified by the user. For γ, we use a logarithmic scale from 10−4 to 104 and perform a grid search.
For kc, the number of clusters ranges from 3 to 7 with a step size of 1, also using a grid search approach.

The possible values for the hyperparameters kc and γ constitute a parameter grid. For each combination
of parameters, we trained a spectral clustering model and evaluated the performance of the clustering
results. We employed CHI as our evaluation metric and selected the combination of parameters that
maximizes this metric as our final configuration for the hyperparameters. For 10 different physicochemical
properties of amino acids, we obtained 10 corresponding spectral clustering results. Then, we obtained
10 dictionaries for grouping based on 10 different clustering results, completing the PSD process, as
shown in Appendix C. Their visual representations are depicted in Figure 4. According to the clustering
results, we found that the number of clusters in dictionaries D5 and D6 is six, whereas the remaining
eight dictionaries each comprise seven clusters. Each group in the dictionaries contains a maximum of 6
amino acids and a minimum of 1 amino acid.
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Figure 5 (Color online) Comparison of the effects of different dictionaries for grouping.

3.4 Comparison of the effect of different dictionaries for amino acid grouping

In the previous section, we obtained ten dictionaries for amino acid grouping. Based on one of these
dictionaries, the amino acid residues of the original protein sequence were replaced by the identification
number of their respective groups, resulting in the re-encoding of the protein.

This process can reduce interference in the sequence alignment, while also linking the original amino
acid sequence information to its physicochemical properties. As a result, it effectively enhances the
efficiency of LS distance and SW scores in quantifying protein similarity. To substantiate this perspective
and highlight the role of the PSD process, we compared the results after substitution with different
dictionaries for amino acid grouping to those without any amino acid substitution. Two methods for
measuring the amino acid similarity, the LS distance and SW score, were employed to compare the
results of dictionaries for grouping. The overall outcomes are illustrated in Figure 5, while the specific
results are presented in Appendix C.

The results indicate that models utilizing amino acid grouping generally outperform those that do
not incorporate this grouping. These results align with our expectations and demonstrate the intended
benefits of amino acid grouping. For specific datasets, such as T3SE, some models exhibited lower
performance when using dictionaries compared to not using them.

The results indicate that for the functional protein classification datasets DBP, T3SE, and PVP, the
models based on amino acid grouping achieved significant improvements in ACC compared to those
without amino acid grouping. For the other seven PTM identification datasets, the effect of amino acid
grouping enhancement was not as pronounced. We attribute this result to the relatively shorter protein
sequences in the PTM datasets compared to those in the amino acid function identification datasets, which
weakens the noise-reducing benefits of amino acid grouping. Additionally, overall, the SW algorithm
consistently outperforms the LS algorithm. This advantage is due to the SW algorithm’s ability to
insert gaps during sequence alignment, resulting in better sequence alignments and, consequently, a more
accurate representation of sequence similarity.

The results also r unveiled another noteworthy observation: the performance of different dictionaries
varies across datasets. For instance, when using the LS distance, amino acid groupings based on dictionary
d5, which includes protein secondary structure information, achieved the highest performance with the
DBP dataset but performed the lowest with T3SE. The reason for this discrepancy is that different PSD
processes produce dictionaries corresponding to different physicochemical properties of amino acids, and
the contributions of these properties to protein classification vary among datasets.

In conclusion, the use of amino acid grouping can provide substantial performance improvements.
However, no single amino acid dictionary exhibits good performance across all datasets. This introduces
another challenge: the crucial task of selecting the most suitable dictionary. We innovatively addressed
this concern by utilizing MKL to integrate similarity kernels generated from all dictionaries. Different
kernels are assigned varying weights, leveraging the potential of each amino acid dictionary. This method
will be elucidated in the following section.
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Figure 6 (Color online) Illustration of the proportional kernel weights computed by HCKDM-MKL.

3.5 Multiple kernel learning

In the previous section, we derived dictionaries for amino acid groupings, each corresponding to distinct
physicochemical properties. For each dictionary, we selected two distinct sequence similarity measurement
methods: the LS distance and SW scores. These two methods offer different perspectives when assessing
protein sequence similarity. Consequently, by integrating 10 amino acid substitution dictionaries with
the 2 sequence similarity measurement techniques, we obtained 20 protein similarity kernels. These 20
kernels represent a multidimensional evaluation of protein sequence similarity, with each kernel having a
unique characterization capability.

In our grid search parameter tuning, we adjusted the parameters k and λ. The parameter k was varied
in increments of 10, starting from 10 up to 100. Meanwhile, λ was tested at intervals of 0.1, ranging
from 0.1 to 0.9. This systematic approach allowed us to explore a comprehensive grid of parameter
combinations to identify the optimal settings for HCKDM-MKL.

Utilizing HCKDM-MKL, we obtained weights for the 20 similarity kernels. These weights signify the
contribution of each similarity kernel in the fused kernel. To visually represent the weight of each similarity
kernel as well as the proportions of contributions from LS distance and SW scores, we constructed a
concentric ring chart, as shown in Figure 6. Examining the kernel weight figures allows us to summarize
various typical patterns of kernel weights obtained through the HCKDM-MKL method. The first type,
represented by T3SE, effectively utilizes all 20 similarity kernels. These kernels control the importance
of different information with weights. The second type utilizes only a few or even a special similarity
kernel, exemplified by PSNS. Regardless of the type, they both employ the HCKDM-MKL method to
select relevant information, and their effectiveness has been demonstrated in experiments.

To highlight the effectiveness of our newly proposed MKL method, HCKDM-MKL, we also compared
it with two common MKL methods: Hilbert-Schmidt independence criterion multiple kernel learning
(HSIC-MKL) [51] and hybrid kernel alignment maximization multiple kernel learning (HKAM-MKL) [53].
Furthermore, we included the commonly-used method of average kernel weights for comparison, aiming
to evaluate the efficacy of MKL approaches. The results are presented in Table 3 and Figure 7. We found
that the performance of HCKDM-MKL consistently surpassed that of HSIC-MKL and HKAM-MKL in
terms of the mean weight across all datasets. This underscores the advanced nature and robustness of
our method. In Figure 7, the line graph categorizes MKL methods into three regions, A, B, and C, based
on performance as delineated by the top and least-performing kernels. Area A represents MKL methods
that not only select but also optimally combine various kernels, enhancing overall performance beyond
any single kernel. Area B indicates methods that perform adequate kernel selection without significant
performance enhancement. In contrast, Area C consists of substandard methods whose performance
does not surpass the baseline set by individual kernels. We observe that, apart from the PSNS dataset,
HCKDM-MKL consistently falls within area A. This suggests that it effectively accomplishes kernel fusion
by appropriately assigning weights to different kernels. This even leads to a notable enhancement in the
final results, which aligns perfectly with our expectations.
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Table 3 Comparison of different MKL methods

Dataset HCKDM-MKL HSIC-MKL HKAM-MKL Mean weight

DBP 0.8925 0.8817 0.8817 0.8387

T3SE 0.8289 0.8026 0.8026 0.8158

PVP 0.8298 0.8085 0.8191 0.8298

PTSS 0.9000 0.8813 0.8813 0.8813

PSNS 0.7500 0.7378 0.7378 0.7378

PLGS 0.8381 0.8300 0.8300 0.8340

PCS1 0.8737 0.8715 0.8724 0.8724

PCS2 0.8791 0.8758 0.8649 0.8780

PCS3 0.8687 0.8677 0.8677 0.8677

PCS4 0.8699 0.8628 0.8640 0.8640

Figure 7 (Color online) Comparison of the effectiveness of different MKL methods.

4 Conclusion

The SBSM-Pro method we proposed has achieved outstanding results across multiple datasets, demon-
strating its effectiveness. Through ablation studies, we further showcased the effectiveness and indispens-
ability of each module within SBSM-Pro. Our proposed standard process, PSD, links the physicochemical
properties of amino acids with grouping dictionaries, addressing the issue of excessive gaps in protein
sequence alignment, and maintaining accurate similarity between protein sequences. This process can be
further utilized and developed by more researchers. The SBSM-Pro method computes protein similari-
ties using LS distance and SW score, integrated with an SVM. By extracting multifaceted information
from raw protein sequences, it retains more information than traditional feature extraction techniques
and achieves a higher accuracy rate. We have also proposed a new MKL method, HCKDM-MKL, for
sequence classification, effectively enhancing the potential for computing protein similarity using kernel
matrices. The introduction of MKL offers SVMs the possibility to integrate information from differ-
ent perspectives, which will motivate more researchers to effectively improve the accuracy of sequence
classification by designing a variety of sequence similarity metrics.

SBSM-Pro, which constructs sequence kernels from original sequences, has achieved outstanding re-
sults. However, numerous avenues for further exploration and in-depth research remain open. First, as
part of our future endeavors, we plan to develop a graphical user interface to promote our software and
make it more convenient for more biologists to use. Furthermore, we propose to analyze the structural and
functional attributes of proteins, thereby assessing the similarity between protein sequences from these
two perspectives. Employing deep learning methodologies to predict the three-dimensional structure
of proteins, and subsequently evaluating the structural similarities through alignment and comparison
tools, presents a feasible strategy for the development of the protein structure kernel in the future. Based
on Gene Ontology, we can obtain the annotations of proteins through databases, and then select one
or more ontologies from molecular functions, cellular components, and biological processes for analysis.
By calculating the similarity between different proteins, we can construct the functional kernel of the
proteins. We believe that the construction of structural and functional kernels, coupled with the MKL
method we proposed, has the potential to further enhance the performance of SBSM-Pro. In addition,
it is important to note that SBSM-Pro was originally designed for bio-sequences. Apart from protein
sequences, it should also encompass the classification tasks of DNA and RNA sequences.
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In summary, SBSM-Pro, a classification model designed specifically for biological sequences, has
achieved outstanding results. This pioneering work, characterized by its scalability, will inspire an increas-
ing number of researchers to delve into related studies. These researchers can explore methods for mea-
suring the similarity between protein sequences from various perspectives, generate similarity kernels, and
integrate them into models through MKL methods. Additionally, they can utilize the existing models to
assist or even guide biological experiments, probing into the potential information of biological sequences.
SBSM-Pro is available for access at http://lab.malab.cn/soft/SBSM-Pro/. The source code and datasets
of SBSM-Pro are freely available in the GitHub repository at https://github.com/yzwbio/Support-Bio-
sequence-Machine.
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